

METER SOCKETS AND TEST SWITCHES

TOPICS

- Transformer Rated Meter Applications
 - Sockets
 - Test Switches
 - Hot Sockets

> Self-Contained vs. Transformer-Rated

> Self-Contained vs. Transformer-Rated

SELF-CONTAINED VS. TRANSFORMER-RATED

> SELF-CONTAINED METERING

Primarily Residential (2S)

> Self-Contained vs. Transformer-Rated

Primarily Commercial/Industrial (9S)

tescometering.com

> Transformer-Rated Metering

Primarily Commercial/Industrial

(9S)

Typical Components of an Installation

PT/VT –Voltage Transformer

> Transformer-Rated Metering

PT/VT –Voltage Transformer

PT/VT

- Scales Down the Voltage
 - 4:1
 - 480V:120V

CT – Current Transformer

PAGES 23-26

CT – Current Transformer

CT

- Scales Down the Current
 - 400:5
 - 800A:10A

Meter

METERS 101 – A-BASE, K-BASE, S-BASE

K-base

A-base

S-base

> Transformer-Rated Metering

Enclosure, Socket, Test Switch

> Transformer-Rated Metering

Enclosure

- Painted Steel or Aluminum
 - One or Two Piece Lid
 - Various Knock-outs and hubs
- Many, Many Configurations

tescometering.com

Trans-Sockets

Socket

 Configured for Specific Form

Socket

> Transformer-Rated Metering

Test Switch

- Upmost Safety
 - Shuts the CT
- Isolates the Meter from the Service During Testing

tescometering.com 21

What is a Hot Socket?

- Hot Sockets are not a new phenomenon. Virtually every meter man has pulled a meter with a
 portion of the meter base around a blade melted and virtually every utility has been called to assist
 in the investigation of a fire at a meter box.
- AMI deployments because of the volume of meters involved put a spot light on this issue.
 - What causes a hot socket?
 - Are the meters ever the cause of a meter box failure?
 - What are the things to look for when inspecting an existing meter installation?
 - What are the best practices for handling potential hot sockets?
- This presentation will cover the results of our lab investigation into the sources for hot sockets, the development of a fixture to simulate hot sockets, the tests and data gleaned from hot sockets, and a discussion of "best practices" regarding hot sockets.

Searching for Hot Socket Sources

Common Features and Common Sources of Concern

Tin burned off

Blade hole due to arcing to jaw – Copper melts at 1040°C (1900°F)

AX-SD base thermoset plastic melts at 960°C (1760°F)

Searching for Hot Socket Sources

Common Features and Common Sources of Concern

- Pitted and discolored meter blades
- Melted plastic around one or more of the meter stabs (typically the plastic around one stab is where the deformation starts)
- Pitted and discolored socket jaws
- Loss of spring tension in the socket jaws

Lab Testing - Hot Socket Simulation Fixture

Temperature Rise Data

Temperature vs. Time

Socket Analysis

Insertions, Heated Jaws vs Normal, Heated at 700°F for 5 minutes

Defense and Protection Against Hot Sockets – Jaw Tension Testers

Defense and Protection Against Hot Sockets – High Temp and Arc Alarms

Arc Sensing Technology

What can be done once a hot socket is identified?

- Easiest resolution is to replace the damaged jaw.
- Never try and repair a damaged jaw. The tension in the damaged jaw will not return simply by taking a pair of pliers and closing the jaw tighter.
- Either the entire box should be replaced or the damaged jaw (assuming the wiring and other jaws are deemed safe through the rest of the inspection.)

QUESTIONS AND DISCUSSION

Rob Reese

Midwest Regional Sales Manager

rob.reese@tescometering.com

TESCO – The Eastern Specialty Company

Bristol, PA

215.310.8809

This presentation can also be found under Meter Conferences and Schools on the TESCO website: tescometering.com

ISO 9001:2015 Certified Quality Company ISO 17025:2017 Accredited Laboratory