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THREE PHASE POWER INTRODUCTION
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Basic Assumptions

•Three AC voltage sources

•Voltages Displaced in time

•Each sinusoidal

•Identical in Amplitude



AC THEORY – SINE WAVE
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AC THEORY - PHASE

Sine Wave
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THREE PHASE THEORY
SINGLE PHASE - VOLTAGE PLOT
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THREE PHASE THEORY
TWO PHASES - VOLTAGE PLOT
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THREE PHASE THEORY
THREE PHASE - VOLTAGE PLOT
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THREE PHASE POWER
AT THE GENERATOR
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Three voltage vectors 
each separated by 120°.

Peak voltages essentially 
equal.

Most of what makes three phase systems seem complex is what we do to this simple 
picture in the delivery system and loads.

VcnVan Vbn



THREE PHASE POWER
BASIC CONCEPT – PHASE ROTATION
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Phase Rotation:

The order in which the 
phases reach peak 
voltage.

There are only two 
possible sequences:

A-B-C  (previous slide)

C-B-A  (this slide)

Phase rotation is important because the direction of rotation of a three phase motor 
is determined by the phase order.
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THREE PHASE THEORY
PHASORS AND VECTOR NOTATION

• Phasors are a graphical means of representing the 
amplitude and phase relationships of voltages and currents.
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V = sin(θ)
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THREE PHASE POWER
PHASORS AND VECTOR NOTATION

• As stated in the Handbook of Electricity Metering, by 
common consent, counterclockwise phase rotation has 
been chosen for general use in phasor diagrams.
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V = V0sin(θ-120)
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THREE PHASE POWER
PHASORS AND VECTOR NOTATION

• The phasor diagram for a simple 3-phase system has three 
voltage phasors equally spaced at 120° intervals.

• Going clockwise the order is A – B – C.
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THREE PHASE THEORY
SYMBOLS AND CONVENTIONS

A

B

C

N

Ia

Ib

Ic

Slide 13

• Systems formed by 
interconnecting secondary of 3 
single phase transformers.

• Generally primaries are not 
show unless details of actual 
transformer are being 
discussed.



• Often even the coils are not 
shown but are replaced by 
simple line drawings
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THREE PHASE THEORY
SYMBOLS AND CONVENTIONS



• Three Voltage 
Phasors

• 120° Apart

• Three Current 
Phasors

• Aligned with 
Voltage at PF=1
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3 PHASE, 4-WIRE  “Y” SERVICE
0° = UNITY POWER FACTOR



• Voltages are generally labeled Va, Vb, Vc, Vn for the three 
phases and neutral

• This can be confusing in complex cases.

• The recommended approach is to use two subscripts so the 
two points between which the voltage is measured are 
unambiguous.

B
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N Vca

Vbn

Van
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Vab

Vbc
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SYMBOLS AND CONVENTIONS
LABELING

Vab means voltage at “a” as 
measured relative to “b”.



2 PHASE, 3-WIRE  “Y” SERVICE
“NETWORK CONNECTION”
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Single phase variant of the service.

Two voltage sources with their returns connected to a common point.

Provides 208 rather than 240 volts across “high side” wires.



• Two Voltage 
Phasors

• 120° Apart

• Two Current 
Phasors

• Aligned with 
Voltage at PF=1
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2 PHASE, 3-WIRE  “NETWORK” SERVICE



3 PHASE, 3-WIRE  DELTA SERVICE
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Common service type for industrial customers.  This service may have  NO 
neutral.

•Voltages normally measured relative to phase B.

•Sometimes phase B will be grounded

•Voltage and current vectors do not align.

•Service is provided even when a phase is grounded.



3 PHASE, 3-WIRE  DELTA SERVICE
 RESISTIVE LOADS

• Two Voltage Phasors

• 60° Apart

• Two Current Phasors

• For a resistive load one current leads by 30° while the other 
lags by 30°
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3 PHASE, 3-WIRE  DELTA SERVICE
UNDERSTANDING THE DIAGRAM
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3 PHASE, 3-WIRE  DELTA SERVICE
UNDERSTANDING THE DIAGRAM
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3 PHASE, 3-WIRE  DELTA SERVICE

 RESISTIVE LOAD

• Two Voltage Phasors

• 60° Apart

• Two Current Phasors

• For a resistive 
load one current 
leads by 30° while 
the other lags by 30°
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3 PHASE, 4-WIRE  DELTA SERVICE
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Common service type for industrial customers.  Provides a residential like 
120/240 service (lighting service) single phase 208 (high side) and even 3 
phase 240 V.

•Voltage phasors form a “T” 90° apart

•Currents are at 120° spacing

•In 120/120/208 form only the “hot” (208) leg has its voltage and 
current vectors aligned.



3 PHASE, 4-WIRE  DELTA SERVICE
 RESISTIVE LOAD

• Three Voltage Phasors

• 90° Apart

• Three Current 
Phasors

• 120° apart
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AC THEORY – RESISTIVE LOAD

Sine Wave
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AC RVrms

Irms

Resistors are measured in Ohms.  When an AC voltage is applied to a resistor, the current 

is in phase. A resistive load is considered a “linear” load because when the voltage is 
sinusoidal the current is also sinusoidal.



AC THEORY – INDUCTIVE LOAD

Sine Wave
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Inductors are measured in Henries.  When an AC voltage is applied to an inductor, the 

current is 90 degrees out of phase.  We say the current “lags” the voltage.  A inductive 
load is considered a “linear” load because when the voltage is sinusoidal the current is 
also sinusoidal.



AC THEORY – CAPACITIVE LOAD

AC C
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Sine Wave
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Capacitors are measured in Farads.  When an AC voltage is applied to a capacitor, the 

current is 90 degrees out of phase.  We say the current “leads” the voltage.  A capacitive 
load is considered a “linear” load because when the voltage is sinusoidal the current is 
sinusoidal.



AC THEORY – POWER

• Power is defined as     P = VI

• Since the voltage and current at every point in time 
for an AC signal is different, we have to distinguish 
between instantaneous power and average power. 
Generally when we say “power” we mean average 
power.

• Average power is only defined over an integral 
number of cycles.
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TIME OUT FOR TRIG
(RIGHT TRIANGLES)

c

a
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The Right Triangle:

The Pythagorean theory

 c2 = a2 + b2

c

b
=)sin(



AC THEORY – POWER TRIANGLE
(SINUSOIDAL WAVEFORMS)
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If V = sin(ωt) and I = sin(ωt - θ)  (the load is linear)

then

 Active Power = VIcos(θ) Watts

 Reactive Power = VIsin(θ) VARs

 Apparent Power = VI  VA

 Power Factor = Active/Apparent = cos(θ)

Watts

V
A

R
s



AC THEORY
INSTANTANEOUS POWER

Sine Wave
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P = 11520 Watts



AC THEORY
INSTANTANEOUS POWER

Sine Wave
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For an inductive load:

P = 0 Watts
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AC THEORY
 INSTANTANEOUS POWER

Sine Wave
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For a capacitive load:

P = 0 Watts
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AC THEORY – COMPLEX CIRCUITS
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AC THEORY – INSTANTANEOUS POWER

Sine Wave
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THREE PHASE POWER
BLONDEL’S THEOREM

Slide 37

If energy be supplied to any system of conductors through 
N wires, the total power in the system is given by the 
algebraic sum of the readings of N wattmeters, so 
arranged that each of the N wires contains one current 
coil, the corresponding voltage coil being connected 
between that wire and some common point.  If this 
common point is on one of the N wires, the measurement 
may be made by the use of N-1 wattmeters.



THREE PHASE POWER
BLONDEL’S THEOREM

• Simply – We can measure the power in a N wire 
system by measuring the power in N-1 conductors.

• For example, in a 4-wire, 3-phase system we need to 
measure the power in 3 circuits.
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THREE PHASE POWER
BLONDEL’S THEOREM

• If a meter installation meets Blondel’s Theorem then 
we will get accurate power measurements under all 
circumstances.

• If a metering system does not meet Blondel’s 
Theorem then we will only get accurate 
measurements if certain assumptions are met.
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BLONDEL’S THEOREM

Slide 40

• Three wires

• Two voltage measurements with one side 
common to Line 2

• Current measurements on lines 1 & 3.

This satisfies Blondel’s Theorem.



BLONDEL’S THEOREM

Slide 41

• Four wires

• Two voltage measurements to neutral

• Current measurements on lines 1 & 3. How about line 
2?

This DOES NOT satisfy Blondel’s Theorem.



BLONDEL’S THEOREM

• In the previous example:
• What are the “ASSUMPTIONS”?
• When do we get errors?

• What would the “Right Answer” be?

• What did we measure?
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)cos()cos()cos( cccbbbaaasys IVIVIVP  ++=

)]cos()cos([)]cos()cos([ bbcccbbaaasys IIVIIVP  −+−=



BLONDEL’S THEOREM
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BLONDEL’S THEOREM

• Phase B power would be:  
• P = Vb Ib cosθ

• But we aren’t measuring Vb 

• What we are measuring is:
• IbVacos(60- θ) + IbVccos(60+ θ)

• cos(α + β) = cos(α)cos(β) - sin(α)sin(β)

• cos(α - β) = cos(α)cos(β) + sin(α)sin(β)

• So
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BLONDEL’S THEOREM

• Pb = Ib Va cos(60- θ) + Ib Vc cos(60+ θ)

• Applying the trig identity
• IbVa(cos(60)cos(θ) + sin(60)sin(θ)) 

  IbVc (cos(60)cos(θ) - sin(60)sin(θ)) 

• Ib(Va+Vc)0.5cos(θ) + Ib(Vc-Va) 0.866sin(θ) 

• Assuming
• Assume Vb = Va = Vc

• And, they are exactly 120° apart 

• Pb = Ib(2Vb)(0.5cosθ) = IbVbcosθ
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BLONDEL’S THEOREM

• If Va ≠ Vb ≠ Vc then the error is

• %Error = 

     -Ib{(Va+Vc)/(2Vb) - (Va-Vc) 0.866sin(θ)/(Vbcos(θ))

How big is this in reality?  If

Va=117, Vb=120, Vc=119, PF=1 then E=-1.67%

Va=117, Vb=116, Vc=119, PF=.866 then E=-1.67%
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BLONDEL’S THEOREM
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Condition % V % I Phase A Phase B

non-

Blondel

Imb Imb V φvan I φian V φvbn I φibn
% Err

All balanced 0 0 120 0 100 0 120 180 100 180 0.00%

Unbalanced voltages PF=1 18% 0% 108 0 100 0 132 180 100 180 0.00%

Unbalanced current PF=1 0% 18% 120 0 90 0 120 180 110 180 0.00%

Unbalanced V&I PF=1 5% 18% 117 0 90 0 123 180 110 180 -0.25%

Unbalanced V&I PF=1 8% 18% 110 0 90 0 120 180 110 180 -0.43%

Unbalanced V&I PF=1 8% 50% 110 0 50 0 120 180 100 180 -1.43%

Unbalanced V&I PF=1 18% 40% 108 0 75 0 132 180 125 180 -2.44%

Unbalanced voltages

 PF≠1  PFa = PFb
18% 0% 108 0 100 30 132 180 100 210 0.00%

Unbalanced current

 PF≠1 PFa = PFb
0% 18% 120 0 90 30 120 180 110 210 0.00%

Unbalanced V&I

 PF≠1 PFa = PFb
18% 18% 108 0 90 30 132 180 110 210 -0.99%

Unbalanced V&I

 PF≠1 PFa = PFb
18% 40% 108 0 75 30 132 180 125 210 -2.44%

Unbalanced voltages

 PF≠1  PFa ≠ PFb
18% 0% 108 0 100 60 132 180 100 210 -2.61%

Unbalanced current

 PF≠1 PFa ≠ PFb
0% 18% 120 0 90 60 120 180 110 210 0.00%

Unbalanced V&I

 PF≠1 PFa ≠ PFb
18% 18% 108 0 90 60 132 180 110 210 -3.46%

Unbalanced V&I

 PF≠1 PFa ≠ PFb
18% 40% 108 0 75 60 132 180 125 210 -4.63%

Power Measurements Handbook



AC THEORY – POWER

• Power is defined as     P = VI

• Since the voltage and current at every point in time 
for an AC signal is different, we have to distinguish 
between instantaneous power and average power. 
Generally when we say “power” we mean average 
power.

• Average power is only defined over an integer 
number of cycles.
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HARMONICS
CURSE OF THE MODERN WORLD

• Every thing discussed so far was based on “Linear” 
loads.

• For linear loads the current is always a simple sine wave. 
Everything we have discussed is true.

• For nearly a century after AC power was in use ALL 
loads were linear.

• Today, many loads are NON-LINEAR.
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HARMONIC LOAD WAVEFORM

Eq.# Quantity Phase A

1 V(rms) (Direct Sum) 100

2 I(rms) (Direct Sum) 108

3 V(rms) (Fourier) 100

4 I(rms) (Fourier) 108

5 Pa = (∫ V(t)I(t)dt) 10000

6 Pb = ½∑VnIncos(θ) 10000

7 Q = ½∑VnInsin(θ) 0.000

8 Sa = Sqrt(P^2 +Q^2) 10000

9 Sb = Vrms*Irms(DS) 10833

10 Sc = Vrms*Irms(F) 10833

13 PF = Pa/Sa 1.000

14 PF = Pb/Sb 0.923

15 PF = Pb/Sc 0.923
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V = 100Sin(ωt) I = 100Sin(ωt) + 42Sin(5 ωt)



Eq.# Quantity Phase A

1 V(rms) (Direct Sum) 100

2 I(rms) (Direct Sum) 108

3 V(rms) (Fourier) 100

4 I(rms) (Fourier) 108

5 Pa = (∫ V(t)I(t)dt) 10000

6 Pb = ½∑VnIncos(θ) 10000

7 Q = ½∑VnInsin(θ) 0.000

8 Sa = Sqrt(P^2 +Q^2) 10000

9 Sb = Vrms*Irms(DS) 10833

10 Sc = Vrms*Irms(F) 10833

13 PF = Pa/Sa 1.000

14 PF = Pb/Sb 0.923

15 PF = Pb/Sc 0.923

• Important things to note:
• Because the voltage is NOT 

distorted, the harmonic in the 
current does not contribute to 
active power.

• It does contribute to the 
Apparent power.

• Does the Power Triangle hold

• There is considerable 
disagreement about the 
definition of various power 
quantities when harmonics are 
present.
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HARMONIC LOAD WAVEFORM

V = 100Sin(ωt) I = 100Sin(ωt) + 42Sin(5 ωt)

22? QPS +=



3 PHASE POWER MEASUREMENT

• We have discussed how to measure and view power 
quantities (W, VARs, VA) in a single phase case.

• How do we combine them in a multi-phase system?

• Two common approaches:
• Arithmetic

• Vectorial
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3 PHASE POWER MEASUREMENT
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• VAR and VA calculations can lead to some strange 
results:

• If we define

PH W Q VA

A 100 0 100

B 120 55 132

C 120 -55 132

Arithmetic VA 364

Vector VA 340

22 )()( CBACBA QQQWWWVA +++++=
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3 PHASE POWER MEASUREMENT

Arithmetic VA V S I

Vector VA SPQ
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QUESTIONS AND DISCUSSION

Pete Brown

TSTM 

This presentation can also be found under Meter Conferences and 
Schools on the TESCO website: tescometering.com

ISO 9001:2015 Certified Quality Company

ISO 17025:2017 Accredited Laboratory
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