

ANSI METER FORMS

Monday, July 22, 2024

3:15 PM-4:30 PM Carl Chermak

Meters 101 - Electro-Mechanical vs Solid-State

Self-Contained vs Transformer Rated

Blondel's Theorem

Meter Forms

Available References

INDUCTION METERS

- Two coils and a conducting (usually aluminum) disk. A braking magnet.
- Magnetic field from the first coil generates eddy currents in the disk
- Magnetic field from the second coil interacts with the eddy currents to cause motion
- Disk would accelerate without bound except for eddy currents caused by motion through fixed magnetic field which slows the disk
- The end result is that each revolution of the disk measures a constant amount of energy

BASIC ENERGY FORMULA

 The essential specification of a watthour meter's measurement is given by the value

 K_h [Watthours per disk revolution]

• A Kh of 7.2 is typical. In this example, each full rotation of the disk is equivalent to 7.2Wh of energy.

$$E[\text{Watthours }] = K_h \left[\frac{\text{watthours}}{\text{disk revolution}} \right] * n[\text{disk revolution s}]$$

The watthour meter formula is as follows:

METERS 101 – SOLID-STATE

Overview of Functionality

- Potential and Current is scaled down and conditioned with transformers and filters
- ADC's (analog to digital converters) digitize the signals
- A micro-processor or DSP executes the calculations
- Resulting data is displayed, sent externally via the communication circuits, and used for the calibrated pulse output

SELF-CONTAINED METERS

Primarily Residential

Primarily Residential

TRANSFORMER-RATED METERS

Primarily Commercial/Industrial

TRANSFORMER-RATED METERS

Primarily Commercial/Industrial

SERVICES COMMONLY METERED

2 wire, 1 ϕ

3 wire, delta

3 wire, 1 ϕ

4 wire, delta

3 wire, network

4 wire, wye

- French Electrical Engineer Andre Blondel
- Attempt to simplify electrical measurements and validation of the results
- Paper submitted to the International Electric Congress in Chicago in 1893.

$$E = n - 1$$

Blondel Compliant

$$E = n - 1$$

Non-Blondel Compliant

$$E = n - 1$$

Why is non-Blondel metering bad?

- Makes assumptions about the service
- Example: balanced voltages
- Assumptions might not be true
- When these assumptions are not true, then there are power measurement errors even if the meter is working perfectly.

Why are non-Blondel meters used?

- Fewer elements (meters) = lower cost
- Especially true for electro-mechanical meters
- Fewer CT's and PT's = lower cost
- Less wiring and cheaper sockets

METER FORMS

tescometering.com 16

METER STANDARDIZATION (BACKGROUND)

1928 First detachable meter produced in US

- Forerunner of today's Socket Meter
- Provides outside mountable meter

1933 Introduction of a true "socket system"

- Type "S" socket and Type "CS" meter
- Wide spread acceptance

1934 Parameters for "socket" meters standardized

- Interchangeable mounting was developed
- Participation by all manufacturers okayed

Meter Standardization (Background)

1934 Metering committees establish guidelines

- Edison Electric Institute
- Association of Edison Illuminating Companies

1940 Standard dimensions & wiring documented

- Published in "Electrical Metermen's Handbook
- Reference numbers look like forms but are not

"FORM" STANDARDS ESTABLISHED

1958 - 1960 First Standards Published

- •MSJ-10 Standard established (includes Forms)
- Published jointly by AEIC, EEI, & NEMA

1978 New ANSI Standard Introduced

- MSJ-10 replaced by ANSI C12.10 Standard
- No change to established "Forms"

WHAT IS A METER FORM NUMBER?

IEEE Standard Dictionary of Electrical and Electronic Terms defines a watthour meter "form designation" as:

- An alphanumeric designation denoting the circuit arrangement for which the meter is applicable and it's specific terminal arrangement.
- The same designation is applicable to equivalent meters of all manufactures.

WHAT IS A METER FORM NUMBER?

A Form designation tells us:

- The Physical Configuration of the meter
 - Socket (S)
 - Bottom Connected (A)
- The number and arrangement of meter terminals
- The number of voltage circuits within the meter
- The number of current circuits within the meter
- The number and arrangement of meter elements (stators)

"FORM" DESCRIBES THE METER

The Form designation describes the meter, not the electrical service.

- Same Form is applicable to equivalent meters of all manufacturers
- •With modern electronic meters, Form consolidation is possible thus reducing variety while improving measurement accuracy
- Form does not change with current or voltage rating
- •Form does not necessarily identify meter as Self-contained or Transformer-rated
- •Form does not change with addition of meter accessories
- More than one meter Form could be used with a particular service, depending on the connection of Instrument Transformers.

NEW ELECTRONIC METER FORMS

New Forms were added (1994 - 1999) to accommodate modern electronic meter construction

- Broad voltage range meter designs require different internal connections
 - -Typically affects transformer rated applications
 - -Cannot support isolated voltage circuits
- •In most popular services, "broad range" meters are compatible with existing socket wiring
- Special applications need to be verified for compatibility

NEW ELECTRONIC METER FORMS

New Meter FORMS (Electronic Meter)	Replacement for existing FORM	<i>Typical</i> Service Application
45S (or 35S)	5S	3W-3Ø
36S (or 46S)	6S	4W-Y
56S (or 66S)	26S	3W-3Ø
45A (or 35A)	5A	3W-3Ø
36A (or 46A)	6A	4W-Y
48A	10A (alternate)	4W-Yor△

DISSECTING THE DIAGRAM

Electromechanical or Electronic with voltage transformers

Electronic with broad range voltage

DISSECTING THE DIAGRAM

Electromechanical or Electronic with voltage transformers

Electronic with broad range voltage

SINGLE PHASE FORMS

Form 1S* 1 Element,

2 wire, single phase

Self Contained

Form 2S*

1 Element,

Self Contained

3 wire, single phase

Form 3S*

1 Element,

Transformer Rated

2 wire, single phase,

3 wire, single phase

Form 4S*

1 Element,

Transformer Rated

3 wire, single phase

SELF CONTAINED - 3 WIRE POLYPHASE

Form 12S*

2 Element,

Self Contained

3 wire delta, network

Form 13S

2 Element,

Self Contained

3 wire delta

SELF CONTAINED - 4 WIRE

 Meterman's view of ANSI Forms looking from the front of the meter.

TRANSFORMER RATED - 4 WIRE

 Meterman's view of ANSI Forms looking from the front of the meter.

TRANSFORMER RATED - 2 ELEMENT

Form 5S

2 Element,3 wire

4 wire, wye

4 wire, delta

Form 35S

2 Element, 3 wire

4 wire, wye

Form 45S*

2 Element,

3 wire

4 wire, wye

4 wire, delta

Form 16A*

3 Element,

4 wire, wye

4 wire, delta

Form 13A*

2 Element,

3 wire, delta

3 wire, network

TRANSFORMER RATED - A BASE 4 WIRE

TRANSFORMER RATED - A BASE 2½ ELEMENT

Form 36A*

2½ Element,4 wire, wye

Form 6A

2½ Element, 4 wire, wye

TRANSFORMER RATED - A BASE 2 ELEMENT

Form 45A*

2 Element,

3 wire

4 wire, wye

4 wire, delta

Form 5A

2 Element,

3 wire

4 wire, wye

4 wire, delta

SWITCHBOARD METERS

Switchboard Connection Designations

- Wide voltage range electronic meter voltage windings are not isolated
- GE Connection Designations similar to S-Base & A-Base meters
- Switchboard Connection Designations are not covered by ANSI standards
- These connections are retrofit compatible with GE DS-60* and ES meters
- DS-64 (3-stator) retrofit uses existing "tall" case
- Actual construction may vary from diagrams shown (for Mfg. convenience)

^{* 9}Z connection shown in short case, DS-64 was built in tall case.

- Wikipedia of course
- https://en.wikipedia.org/wiki/Blondel%27s_theorem
- Power Measurement Handbook Dr. Bill Hardy TESCO CTO Emeritus
- http://www.powermeasurements.org/library/Presentations/ /NCMS%202013%20-%20Non-Blondel%20Metering.pdf
- Third Party meter sites
- https://www.baycitymetering.com/

QUESTIONS AND DISCUSSION

Carl Chermak July 22, 2024

This presentation can also be found under Meter Conferences and Schools on the TESCO website: tescometering.com

ISO 9001:2015 Certified Quality Company ISO 17025:2017 Accredited Laboratory