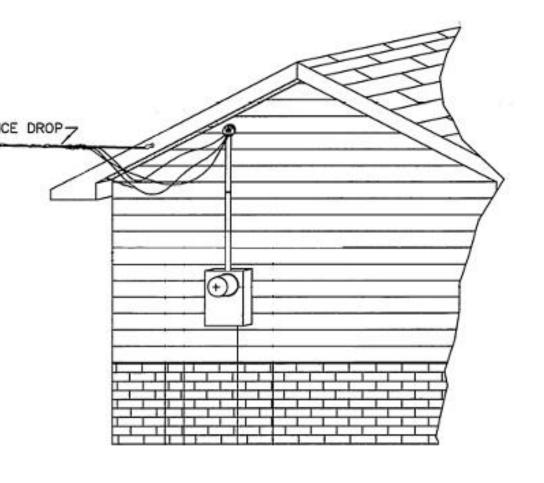


Introduction to Polyphase Metering

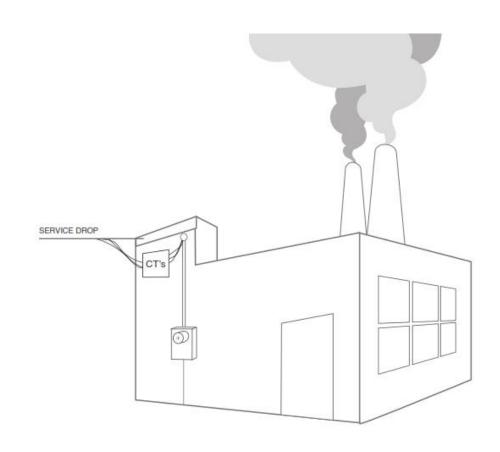
Mid South Electric Metering Association 73rd Meter School

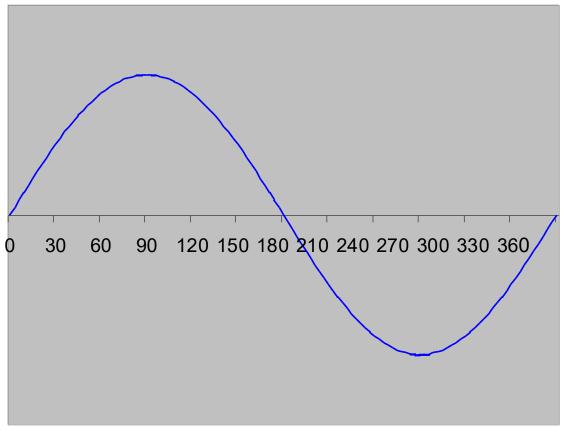
Wednesday May 7, 2025 Group 2: 10:00 AM Tom Lawton

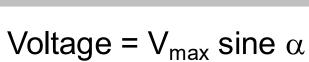
Topics We will be Covering

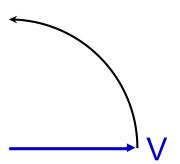

- The Basics Differences Between Self Contained and Transformer or Instrument Rated Meter Sites
- Brief Discussion of polyphase metering for self-contained and transformer rated applications
- Transformer Rated Meter Forms
- Test Switches and CT's
- Blondel's Theorem and why this matters to us in metering
- Meter Accuracy Testing in the Field
- Checking the Health of your CT's and PT's
- Site Verification and not just meter testing

Self Contained Metering

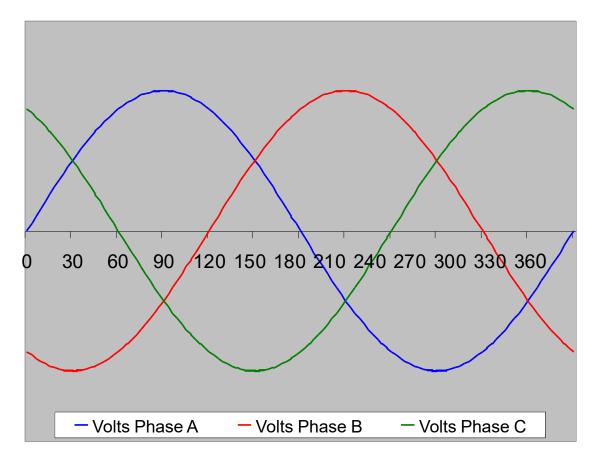

- Typically found in residential metering
- Meters are capable of handling the direct incoming amperage
- Meter is connected directly to the load being measured
- Meter is part of the circuit
- When the meter is removed from the socket,
 power to the customer is interrupted

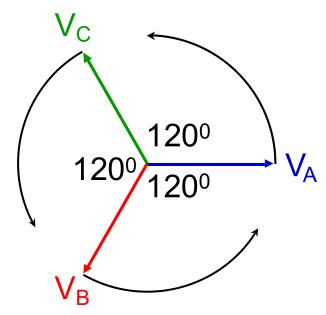

Transformer Rated Metering


- Meter measures a scaled down representation of the load.
- Scaling is accomplished by the use of external current transformers (CTs) and sometimes voltage transformers or PTs).
- The meter is NOT part of the circuit
- When the meter is removed from the socket, power to the customer is not affected.

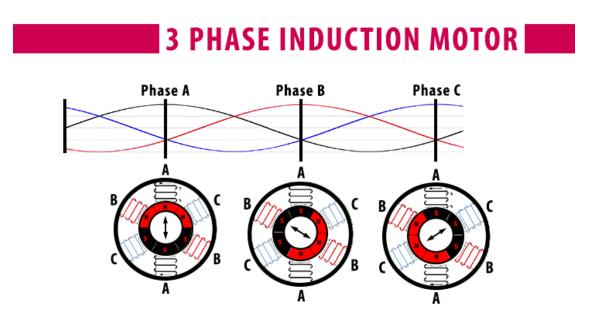


1-Phase and 3-Phase Power



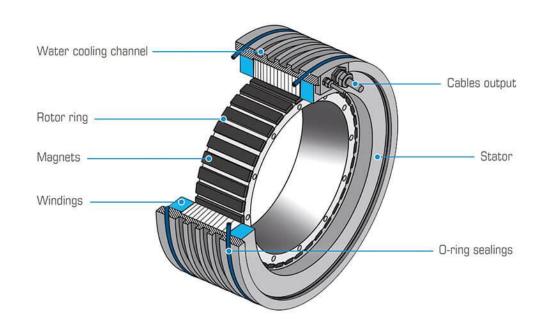


1-Phase and 3-Phase Power

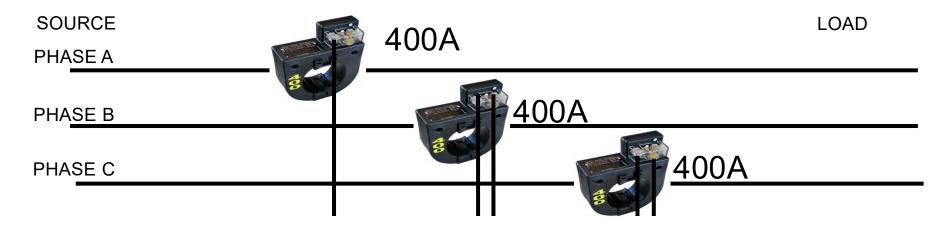


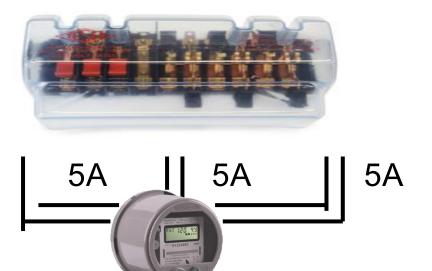
Forward Rotation, ABC

The Need for 3-Phase Power

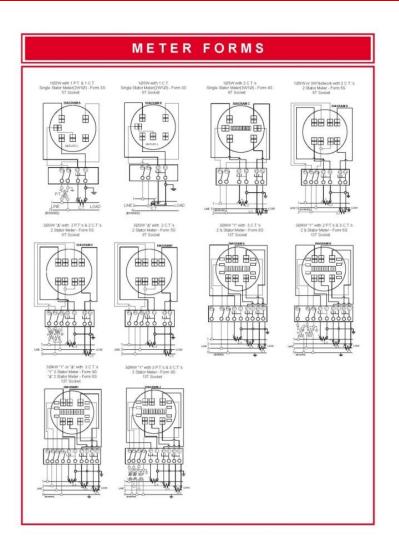

Single-phase motors provide a pulsating torque to a mechanical load. Loads which require more than 10 horsepower generally also require the steadier torque of a 3-phase motor.

Benefits of 3-Phase Power


- ✓ Steadier motor torque
- ✓ Less vibration in machinery
- ✓ Greater mechanical efficiency
- ✓ Better voltage regulation
- ✓ Lower heat losses
- ✓ Lighter weight conductors



Transformer Rated - The Basic Components


9S Meter Installation with 400:5 CT's

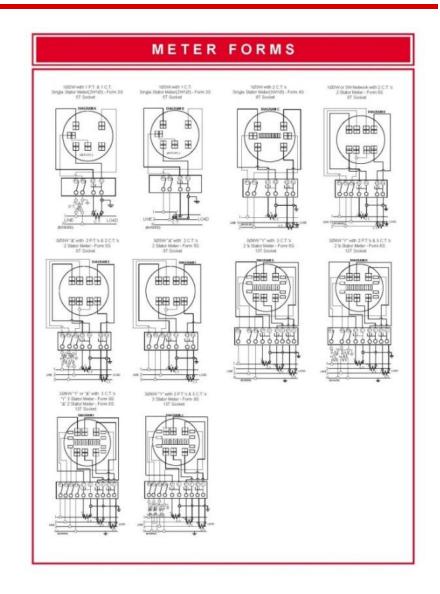
Typical Connections

Typical Connections for Common

Transformer (Instrument) Rated

Meter Forms

Note: See Chapter 4 of the Power Measurement


Handbook for more detailed form by form

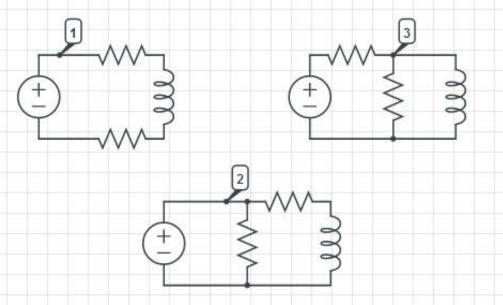
information

Selecting the right meter form

- Select the meter form based on the source, not the load.
 - The "service type" is not always obvious.
 - Loads other than the "known" load can be connected and may be unmetered.
- Meter form numbers describe certain meter characteristics not the service or application
- Consider that ground can be a current carrying conductor when applying Blondel's Theorem.
- Understand the operation of present day, polyphase solid state meters and how they may be used to advantage

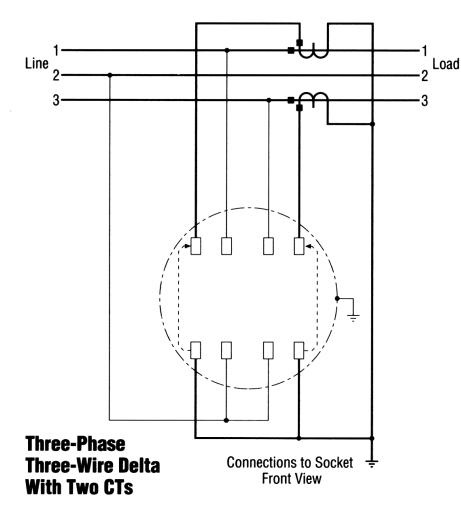
Three Phase Power: Blondel's Theorem

The theory of polyphase watthour metering was first set forth on a scientific basis in 1893 by Andre E. Blondel, engineer and mathematician. His theorem applies to the measurement of real power in a polyphase system of any number of wires. The theorem is as follows:

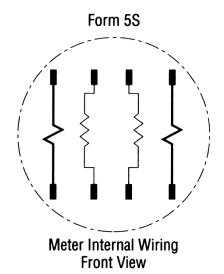

- If energy is supplied to any system of conductors through N wires, the total power in the system is given by the algebraic sum of the readings of N wattmeters, so arranged that each of the N wires contains one current coil, the corresponding voltage coil being connected between that wire and some common point. If this common point is on one of the N wires, the measurement may be made by the use of N-1 wattmeters.

Three Phase Power: Blondel's Theorem

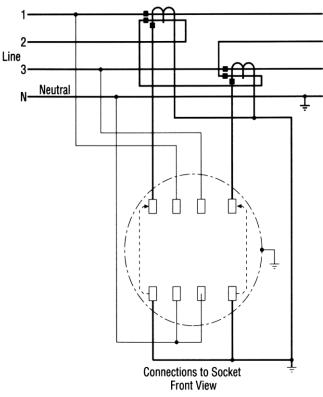
- Simply We can measure the power in a N wire system by measuring the power in N-1 conductors.
- For example, in a 4-wire, 3-phase system we need to measure the power in 3 circuits.


Three Phase Power: Blondel's Theorem

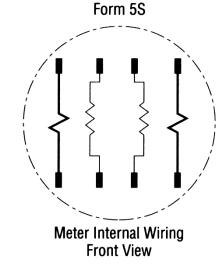
- If a meter installation meets Blondel's
 Theorem then we will get accurate power
 measurements <u>under all circumstances</u>.
- If a metering system does not meet
 Blondel's Theorem then we will only get
 accurate measurements if certain
 <u>assumptions are met</u>.


Blondel's Theorem

- Three wires
- Two voltage measurements with one side common to Line 2
- Current measurements on lines
 1 & 3.


This satisfies Blondel's Theorem.

Blondel's Theorem


Three-Phase Four-Wire Wye With Two Equal-Ratio CTs

Four wires

Load

- Two voltage measurements to neutral
- Current measurements on lines 1 & 3.
 How about line 2?

This DOES NOT satisfy Blondel's Theorem.

- In the previous example:
 - What are the "ASSUMPTIONS"?
 - When do we get errors?
- What would the "Right Answer" be?

$$P_{sys} = V_a I_a \cos(\theta_a) + V_b I_b \cos(\theta_b) + V_c I_c \cos(\theta_c)$$

• What did we measure?

$$P_{sys} = V_a[I_a \cos(\theta_a) - I_b \cos(\theta_b)] + V_c[I_c \cos(\theta_c) - I_b \cos(\theta_b)]$$

Blondel's Theorem

- Phase B power would be:
 - $P = Vb lb cos\theta$
- But we aren't measuring Vb
- What we are measuring is:
 - IbVacos(60- θ) + IbVccos(60+ θ)
- $cos(\alpha + \beta) = cos(\alpha)cos(\beta) sin(\alpha)sin(\beta)$
- $cos(\alpha \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)$
- So

Blondel's Theorem

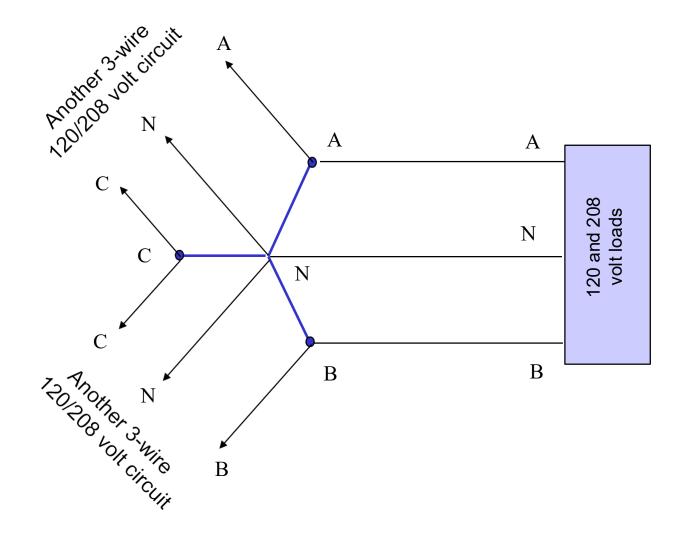
- Pb = Ib Va $cos(60-\theta)$ + Ib Vc $cos(60+\theta)$
- Applying the trig identity
 - IbVa($cos(60)cos(\theta) + sin(60)sin(\theta)$) IbVc $(\cos(60)\cos(\theta) - \sin(60)\sin(\theta))$
 - $Ib(Va+Vc)0.5cos(\theta) + Ib(Vc-Va) 0.866sin(\theta)$
- **Assuming**
 - Assume Vb = Va = Vc
 - And, they are exactly 120° apart
- Pb = Ib(2Vb)(0.5cos θ) = IbVbcos θ

WORLD IS LINEAR

- If Va ≠ Vb ≠ Vc then the error is
- %Error =

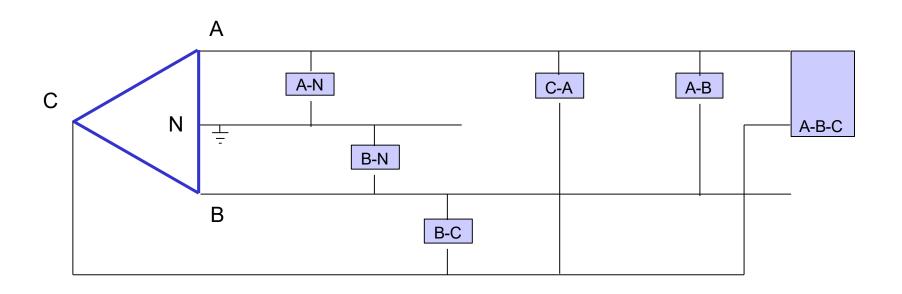
-lb
$$\{(Va+Vc)/(2Vb) - (Va-Vc) 0.866sin(\theta)/(Vbcos(\theta))\}$$

• How big is this in reality? If

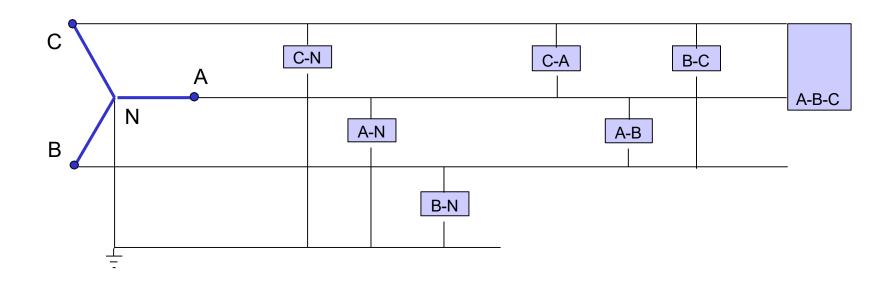

Blondel's Theorem

Power Measurements Handbook

Condition	% V	% I	Phase A				Phase B				non- Blondel
	Imb	Imb	v	фvan	ı	фian	v	фvbn	ı	фibn	% Err
All balanced	0	0	120	0	100	0	120	180	100	180	0.00%
Unbalanced voltages PF=1	18%	0%	108	0	100	0	132	180	100	180	0.00%
Unbalanced current PF=1	0%	18%	120	0	90	0	120	180	110	180	0.00%
Unbalanced V&I PF=1	5%	18%	117	0	90	0	123	180	110	180	-0.25%
Unbalanced V&I PF=1	8%	18%	110	0	90	0	120	180	110	180	-0.43%
Unbalanced V&I PF=1	8%	50%	110	0	50	0	120	180	100	180	-1.43%
Unbalanced V&I PF=1	18%	40%	108	0	75	0	132	180	125	180	-2.44%
Unbalanced voltages PF≠1 PFa = PFb	18%	0%	108	0	100	30	132	180	100	210	0.00%
Unbalanced current PF≠1 PFa = PFb	0%	18%	120	0	90	30	120	180	110	210	0.00%
Unbalanced V&I PF≠1 PFa = PFb	18%	18%	108	0	90	30	132	180	110	210	-0.99%
Unbalanced V&I PF≠1 PFa = PFb	18%	40%	108	0	75	30	132	180	125	210	-2.44%
Unbalanced voltages PF≠1 PFa ≠ PFb	18%	0%	108	0	100	60	132	180	100	210	-2.61%
Unbalanced current PF≠1 PFa ≠ PFb	0%	18%	120	0	90	60	120	180	110	210	0.00%
Unbalanced V&I PF≠1 PFa ≠ PFb	18%	18%	108	0	90	60	132	180	110	210	-3.46%
Unbalanced V&I PF≠1 PFa ≠ PFb	18%	40%	108	0	75	60	132	180	125	210	-4.63%



Network Service & Loads


4-Wire Delta Service & Loads

Need to meter single phase line-neutral and line-line loads, as well as three phase loads. For self contained a Form 16 network meter and Transformer rated a 9S meter. We need to be Blondel Compliant and use a three-element meter. Note: For electro-mechanicals common practice was a Form 15S which was not Blondel compliant. Similarly, a 5S is not Blondel compliant for these services.

4-Wire Wye Service & Loads

Need to meter single phase line-neutral and line-line loads, as well as three phase loads. Use a Form 16 Network meter and a Form 9S Current Meter.

METER ACCURACY TESTING

Meter Accuracy Testing in a Nutshell

- ✓ Full Load
- ✓ Light Load
- ✓ Power Factor

The Importance of CT Testing in the Field

- One transformer in three wired backwards will give the customer a bill of 1/3rd the actual bill.
- One broken wire to a single transformer will give the customer a bill of 2/3rd the actual bill
- One dual ratio transformer inappropriately marked in the billing system as 400:5 instead of 800:5 provides a bill that is ½ of the actual bill. And the inverse will give a bill double of what should have been sent. Both are lose-lose situations for the utility.

The Importance of CT Testing in the Field (cont)

- Cross Phasing (wiring errors)
- Loose or Corroded Connections
- CT Mounted Backwards
- CT's with Shorted Turns
- Wrong Selection of Dual Ratio CT
- Detect Magnetized CT's
- Burden Failure in Secondary Circuit
- Open or Shorted Secondary
- Mislabeled CT's
- Ensures all Shorting Blocks have been Removed

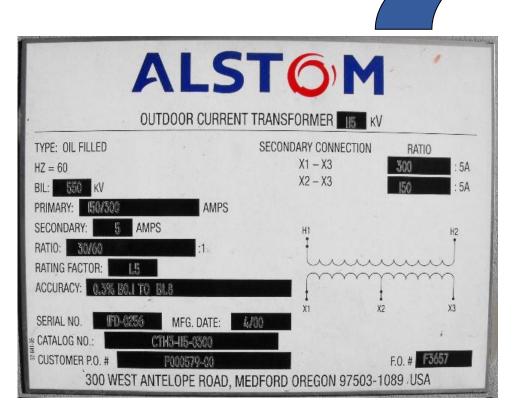
Testing at Transformer Rated Sites

- ✓ Meter Accuracy
- ✓ Full Load
- ✓ Light Load
- ✓ Power Factor
- ✓ CT Health
- ✓ Burden Testing
- ✓ Ratio Testing
- ✓ Admittance Testing
- ✓ Site Verification

Fundamentals of Polyphase Field Meter Testing and Site Verification

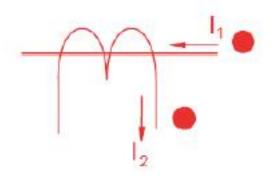
Functionality with Burden Present on the Secondary Loop

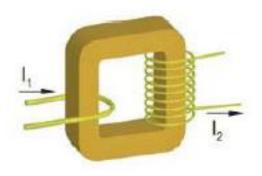
PHASE A



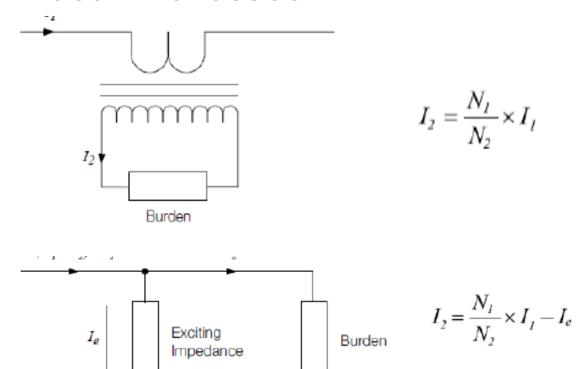
- Some burden will always be present – junctions, meter coils, test switches, cables, etc.
- CT's must be able to maintain an accurate ratio with burden on the secondary.
- Admittance testing?

Functionality with Burden Present on the Secondary Loop


Example Burden Spec: 0.3% @ B0.1, B0.2, B0.5

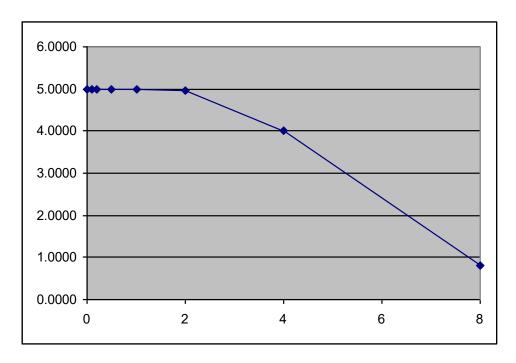

or

There should be less than the 0.3% change in secondary current from initial ("0" burden) reading, when up to 0.5 Ohms of burden is applied


Fundamentals of Polyphase Field Meter Testing and Site Verification (Cont)

$$I_1 \times N_1 = I_2 \times N_2$$

Ideal. No losses

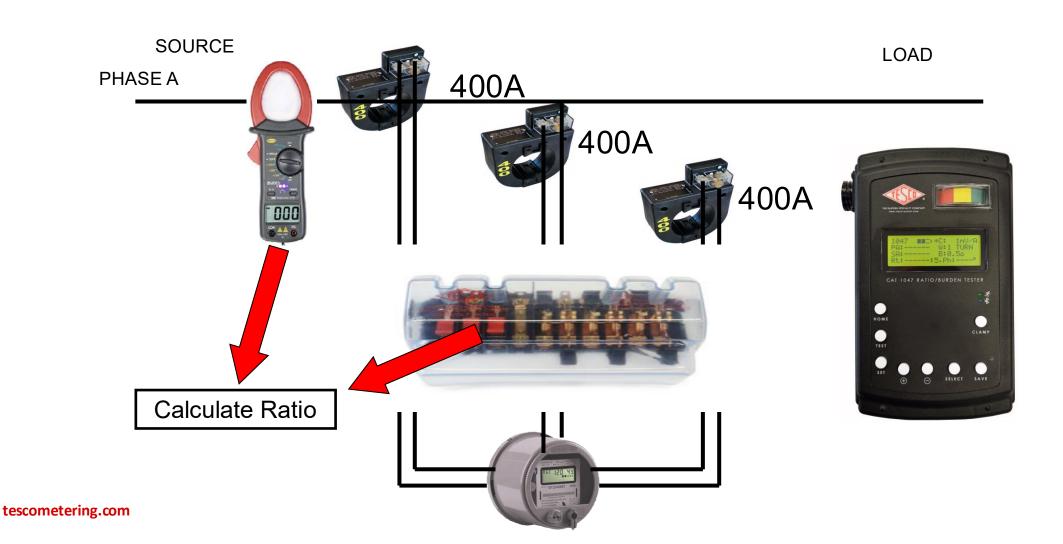


Real, with core losses

Fundamentals of Polyphase Field Meter Testing and Site Verification (Cont)

Functionality with Burden Present on the Secondary Loop

0.3% @ B0.1, B0.2, B0.5


Initial Reading = 5Amps0.3% x 5A = 0.015A5A - 0.015 = 4.985A

Burden	Reading				
0	5.0000				
0.1	4.9999				
0.2	4.9950				
0.5	4.9900				
1	4.9800				
2	4.9500				
4	4.0000				
8	0.8000				

Fundamentals of Polyphase Field Meter Testing and Site Verification (Cont)

Ratio of Primary Current to Secondary Current

Questions and Discussion

Tom Lawton

President

tom.lawton@tescometering.com

TESCO Metering

Bristol, PA

215.228.0500

This presentation can also be found under Meter Conferences and Schools on the TESCO website: tescometering.com

ISO 9001:2015 Certified Quality Company

ISO 17025:2017 Accredited Laboratory