

ANSI METER FORMS

Prepared by Perry Lawton, TESCO The Eastern Specialty Company

For North Carolina Electric Meter School Polyphase Track Monday June 10, 2024 2:45 PM

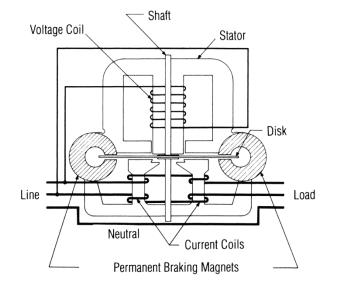
Meters 101 - Electro-Mechanical vs Solid-State

Meter Forms

Self-Contained vs Transformer Rated

Blondel's Theorem

Available References (Hardy's Power Measurement Handbook, UGLY's Elect Ref)

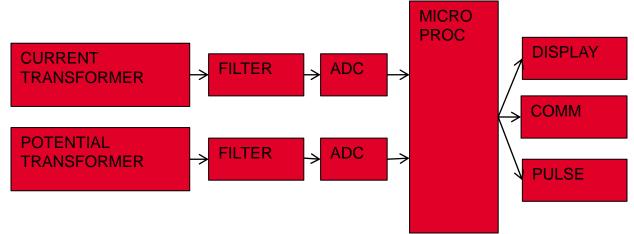

Examples

1S, 2S, 3S, 4S, 5/35S, 8/9S, 16S

INDUCTION METERS

- Two coils and a conducting (usually aluminum) disk. A braking magnet.
- Magnetic field from the first coil generates eddy currents in the disk
- Magnetic field from the second coil interacts with the eddy currents to cause motion
- Disk would accelerate without bound except for eddy currents caused by motion through fixed magnetic field which slows the disk
- The end result is that each revolution of the disk measures a constant amount of energy

- The essential specification of a watthour meter's measurement is given by the value
 K_b [Watthours per disk revolution]
- A Kh of 7.2 is typical. In this example, each full rotation of the disk is equivalent to 7.2Wh of energy.
- The watthour meter formula is as follows:


$$E\left[\text{Watthours}\right] = K_h \left[\frac{\text{watthours}}{\text{disk revolution}}\right] * n\left[\text{disk revolutions}\right]$$

Overview of Functionality

- Potential and Current is scaled down and conditioned with transformers and filters
- ADC's (analog to digital converters) digitize the signals
- A micro-processor or DSP executes the calculations
- Resulting data is displayed, sent externally via the communication circuits, and used

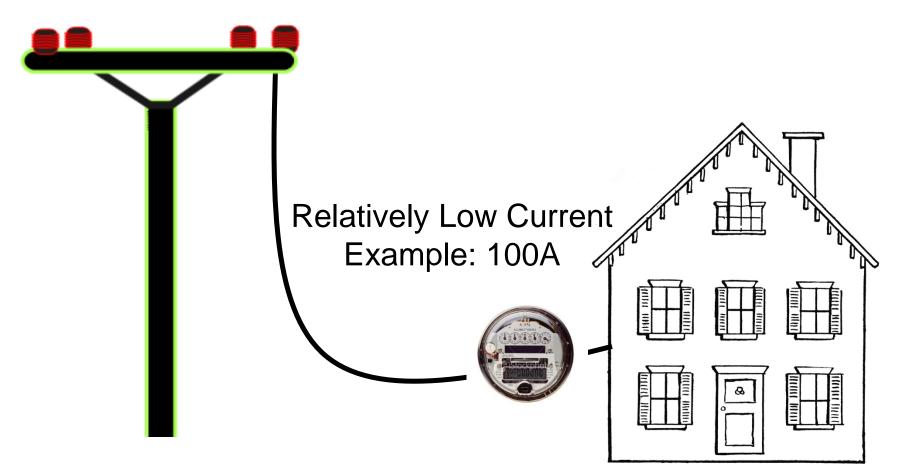
for the calibrated pulse output

METER FORMS

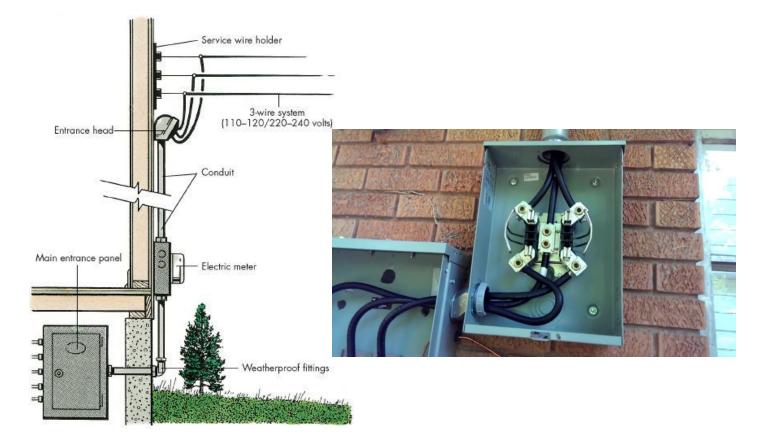
1S	14S		39S				17S	
					2S			
	3S		12S	40			35S	
			46S	4S	1	10S		25S
76S								
		45S		66S				
5S	263	2		11S	6S		32S	
50	200						4	<u> </u>
15	S		9S	13S			I	6S
tescometering.co		24S				56S		

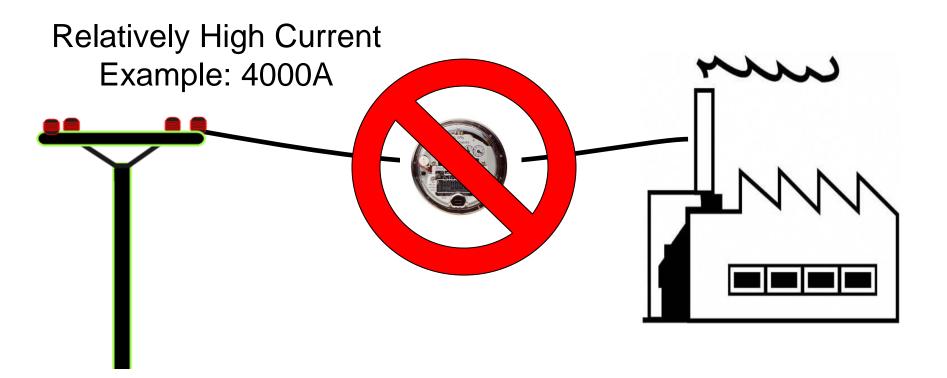
tescometering.com

1S	14S			39S				17S		
		3S		12S			28	5	35S	
76S					4	S	1	10S		25S
	76S	L	45S	46S		66S				
		26S	265		11S				32S	
5S		203		6S				4.0.0		
15	15S	5S 24	9S 5S 24S	9S		13S		56S	1	6S

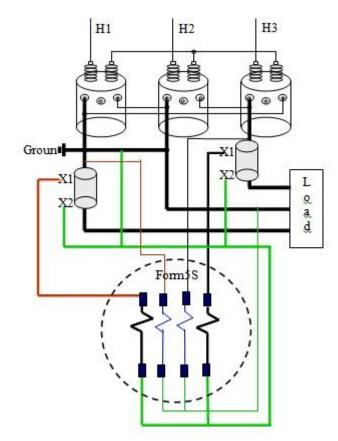


SELF-CONTAINED				TRANSFORMER-RATED				
1S		14S	12S	39S 76S	3S	36	S 29S	7S
	2S	25S		4S	5S		46S	35S
17S			16S	11S		8S	26S	
		13S		6S	Ċ	66S	9S	45S
158	5		32S	56S	1()S	24S	


Primarily Residential

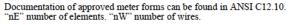


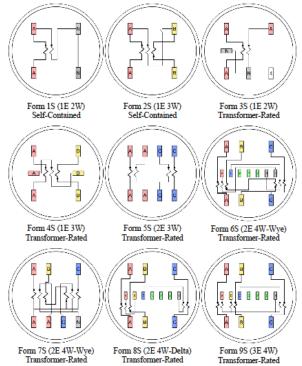
Primarily Residential



Primarily Commercial/Industrial

Primarily Commercial/Industrial





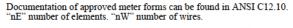
Chapter 2: Introduction to Metering

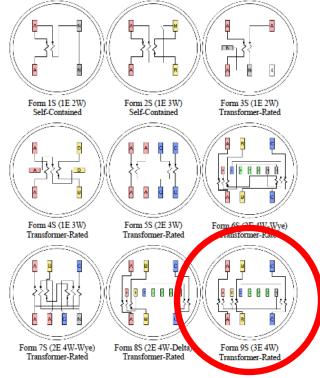
Meter Forms

References

- Power Measurements Handbook, Dr. Bill Hardy
- UGLY's Electrical References
- Meterman's Handbook
- Manufacturer's websites

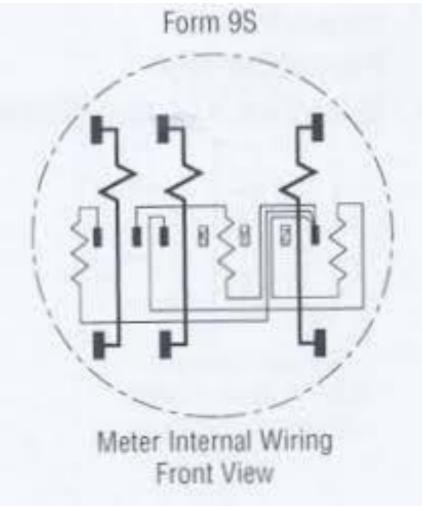
20


Power Measurements Handbook



Chapter 2: Introduction to Metering

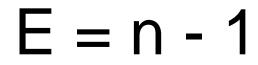
Meter Forms


References

- Power Measurements Handbook, Dr. Bill Hardy
- UGLY's Electrical References
- Meterman's Handbook
- Manufacturer's websites

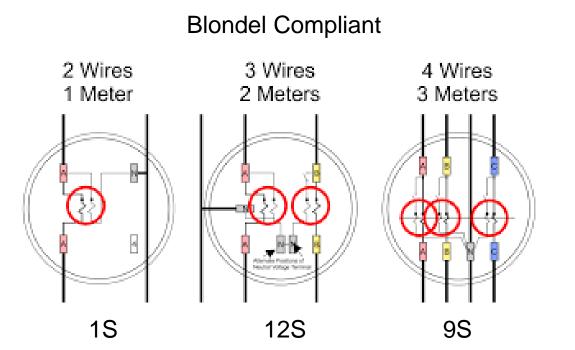
20

DIAGRAM EXAMPLE


- 3 Current Coils
- 3 Potential Coils

BLONDEL'S THEOREM

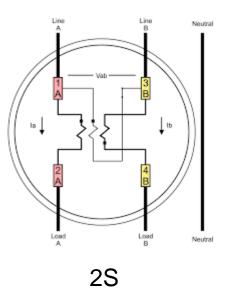
- French Electrical Engineer Andre Blondel
- Attempt to simplify electrical measurements and validation of the results
- Paper submitted to the International Electric Congress in Chicago in 1893.



The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.

BLONDEL'S THEOREM

E = n - 1



The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.

BLONDEL'S THEOREM

Non-Blondel Compliant

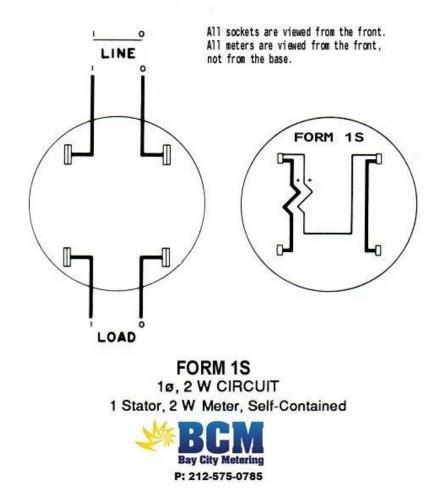
E = n - 1

The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.

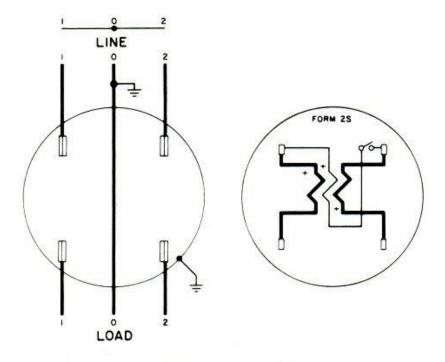
Why is non-Blondel metering bad?

- Makes assumptions about the service
- Example: balanced voltages
- Assumptions might not be true
- When these assumptions are not true, then there are power measurement errors even if the meter is working perfectly.

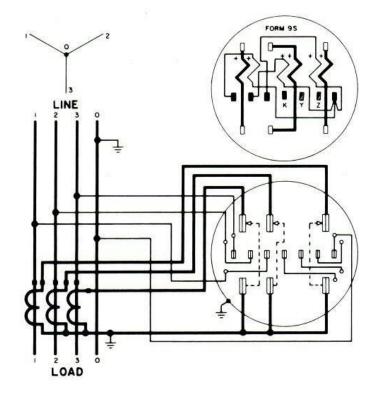
The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.



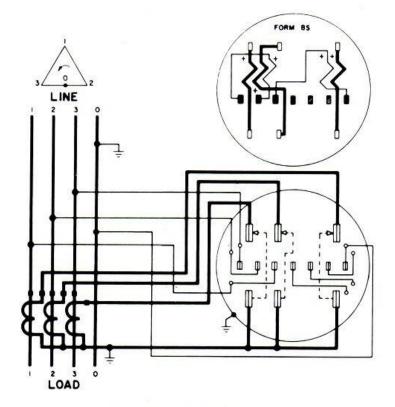
Why are non-Blondel meters used?


- Fewer elements (meters) = lower cost
- Especially true for electro-mechanical meters
- Fewer CT's and PT's = lower cost
- Less wiring and cheaper sockets

The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.



1ø, 3 W CIRCUIT 1 Stator, 1ø, 3 W Meter, Self-Contained



3ø, 4 W, Y CIRCUIT 3 Stator, 3ø, 4 W, Y Meter, Self-Contained

3ø, 4 W, Δ CIRCUIT 2 Stator, 3ø, 4 W, Δ Meter with 3-2 W CT's

- Wikipedia of course
- <u>https://en.wikipedia.org/wiki/Blondel%27s_theorem</u>
- <u>Power Measurement Handbook Dr. Bill Hardy –</u> <u>TESCO CTO Emeritus</u>
- <u>http://www.powermeasurements.org/library/Presentations</u>
 <u>/NCMS%202013%20-%20Non-Blondel%20Metering.pdf</u>
- Third Party meter sites
- <u>https://www.baycitymetering.com/</u>

Meters 101 - Electro-Mechanical vs Solid-State

Meter Forms

Self-Contained vs Transformer Rated

Blondel's Theorem

Available References

Perry Lawton

Northeastern Regional Sales Manager

perry.lawton@tescometering.com

TESCO Metering Bristol, PA 215.500.7511

This presentation can also be found under Meter Conferences and Schools on the TESCO website: tescometering.com

> ISO 9001:2015 Certified Quality Company ISO 17025:2017 Accredited Laboratory

You're invited...

We would like you to join us in the TESCO Hospitality Suite for networking and more discussions about metering. The discussion will not be exclusively metering......but we love metering and that is the most common topic.

TESCO Hospitality Suite – Brighton Tower

Monday and Tuesday 8:00 PM – 10:00 PM

We Hope you Can Join Us!

