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Three Phase Power
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AC Theory — Sine Wave
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V =10Sin(at — )

AC Theory - Phase

Sine Wave
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Three Phase Theory

Single Phase - Voltage Plot
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Three Phase Theory

Two Phases - Voltage Plot
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Three Phase Theory

Three Phase - Voltage Plot
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Three Phase Power

At the Generator
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Three voltage vectors
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Most of what makes three phase systems seem complex is what we do to
this simple picture in the delivery system and loads.




Three Phase Power

Basic Concept — Phase Rotation

Phase Rotation: - ven Vbn Van

The order in which the L0 ~
phases reach peak . \ /

voltage. u \ /

There are only two g \ / \
possible sequences: 05 \
A-B-C (previous slide) 10 \ /

C-B-A (this slide) g | | |

Phase rotation is important because the direction of rotation of a three
phase motor is determined by the phase order.




Three Phase Theory

Phasors and Vector Notation

* Phasors are a graphical means of representing the
amplitude and phase relationships of voltages and
currents.
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Three Phase Power

Phasors and Vector Notation

« As stated in the Handbook of Electricity Metering, by
common consent, counterclockwise phase rotation has
been chosen for general use in phasor diagrams.
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Three Phase Power

Phasors and Vector Notation

« The phasor diagram for a simple 3-phase system has
three voltage phasors equally spaced at 120° intervals.

« Going clockwise the orderis A—- B — C.
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Three Phase Theory

Symbols and Conventions

la
« Systems formed by —>
Interconnecting secondary A
of 3 single phase
transformers. N
« Generally primaries are not
show unless detalils of 9/ 1 \
actual transformer are N Ib
being discussed. -
—
[0




Three Phase Theory

Symbols and Conventions

« Often even the colls are
not shown but are
replaced by simple line
drawings
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3 Phase, 4-Wire “Y” Service

0° = Unity Power Factor

Vector Diagram

SVa 120.707 0.00°

* Jhree v S R
Voltage . lead |
Phasors _

. o S 119.419 119.82°
120" Apart ot R

* Three Lead
Current T Sla SVa SVc  119.727 239.94°
Phasors Sle_ i.ggg zag.gg:

 Aligned with Lag
Voltage at _
PF=1 ine = 1031

RoT = apd P
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Symbols and Conventions

Labeling

« Voltages are generally labeled Va, Vb, Vc, Vn for the
three phases and neutral

e This can be confusing in complex cases.

« The recommended approach is to use two subscripts so
the two points between which the voltage is measured

are unambiguous. A
: !
N V?” I Vca
/4 1
Vab means voltage at “a” as - vbn Vab
measured relative to “b”. C B v i
Ven Vbc
Y Yy v




2 Phase, 3-Wire “Y” Service

“Network Connection”

Single phase variant of the service.

Source

Load

Two voltage sources with their returns connected to a common point.

Provides 208 rather than 240 volts across “high side” wires.
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2 Phase, 3-Wire “Network” Service

Vector Diag ram

* Two Voltage T
Phasors Pr= 1000 001
« 120° Apart
SVbn 119.411 119.82:
« Two Current %‘de 7000 0,000
Phasors |
. . SlaSVan Vsys = 120.060
* Allgned with / lsvs = 1.003
Voltage at o/ |
PF=1 m )
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3 Phase, 3-Wire Delta Service

Common service type for industrial customers. This service may have

NO neutral.
A la A

— T

240
. l 240

c B b M ¢ L
Source Load 240

Ic Y

—>

*\/oltages normally measured relative to phase B.
*Sometimes phase B will be grounded

*Voltage and current vectors do not align.

*Service is provided even when a phase is grounded.
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3 Phase, 3-Wire Delta Service

Resistive Loads

* Two Voltage Vector Diagram

Phasors S
° 600 Apart sic" SVcb E!;g: 0.839  32.74°
* TWO Current Svch  237.914 299.48°

Phasors . o e
* For a resistive oo

load one Svab Vovs = 238.418

current leads by PF= 0860

30° while the st

other lags by

30°
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3 Phase, 3-Wire Delta Service

Understanding the Diagram

A la
Source Load
Ic
C C
Vbc Vca Vcb
>
B Vab A B Vab A
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3 Phase, 3-Wire Delta Service

Understanding the Diagram

Source b Load

lab '\
Ica
lac I
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3 Phase, 3-Wire Delta Service

Resistive Load

« Two Voltage
Phasors

 60° Apart
e Two Current
Phasors

 For aresistive
load one
current leads
by 30° while
the other lags
by 30°

Vector Diagram

SVab  238.922 0.00°
Sla 1.055 32.74°
PF = 0.839 32.74°
Lag

SWch  237.914  299.48°
Slc 1.033 271.29°
PF = 0.881 -28.19°

Vsys = 238.418
Isys = 1.044
PF = 0.860
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3 Phase, 4-Wire Delta Service

Common service type for industrial customers. Provides a residential
like 120/240 service (lighting service) single phase 208 (high side) and
even 3 phase 240 V.

A la A
g 120 T !
N )5( N v 240
T \ —E
- - I 120 240
c B b C B | vy
Source Load 208 220
Ic A Y y v

\/oltage phasors form a “T” 90° apart
*Currents are at 120° spacing

*In 120/120/208 form only the “hot” (208) leg has its voltage and
current vectors aligned.




3 Phase, 4-Wire Delta Service

Resistive Load

Vector Diagram

« Three Sla 1013 2997
Voltage pr= 038 5
o s e

* 90° Apart PF 0.865 -30.14°

== |

* Three

SVc  119.720  269.91°
Current Slc 1056 269.97°
= 1. .05°
Phasors Lag
« 120° apart Vsvs = 119.948
Isys = 1.021
PF—  0.910
ROT = ABC
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AC Theory — Resistive Load

Sine Wave < s —
f
AN / ™\ AC
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-200

Degrees

Resistors are measured in Ohms. When an AC voltage is applied to a resistor, the
current is in phase. A resistive load is considered a “linear” load because when the
voltage is sinusoidal the current is also sinusoidal.
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AC Theory — Inductive Load

- Irms -

Sine Wave

200 ?
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VAV AW ;
AN AN
AR AR
AR 4%
NN VN
S AR

a
2200 \
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S

Inductors are measured in Henries. When an AC voltage is applied to an inductor,
the current is 90 degrees out of phase. We say the current “lags” the voltage. A
inductive load is considered a “linear” load because when the voltage is sinusoidal

the current is also sinusoidal.
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AC Theory — Capacitive Load

Sine Wave % I rms >
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Capacitors are measured in Farads. When an AC voltage is applied to a capacitor,
the current is 90 degrees out of phase. We say the current “leads” the voltage. A
capacitive load is considered a “linear” load because when the voltage is

sinusoidal the current is sinusoidal.
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AC Theory — Power

e Powerisdefinedas P =VI

« Since the voltage and current at every point in
time for an AC signal is different, we have to
distinguish between instantaneous power and
average power. Generally when we say “power’
we mean average power.

* Average power is only defined over an integral
number of cycles.

)




Time Out for Trig

(Right Triangles)

The Right Triangle:
The Pythagorean theory

c2=2a2+ b2

sin(@) = b
¢ <o
O

cos(0) = a
C

tan(@) =g A ‘

a




AC Theory — Power Triangle

(Sinusoidal Waveforms)

VARS

REACTIVE POWER

ACTIVE POWER >

Watts

If V = sin(wt) and | = sin(wt - 6) (the load is linear)

then
Active Power = Vicos(0) Watts
Reactive Power = Visin(6) VARs
Apparent Power = VI VA
Power Factor = Active/Apparent = cos(B)
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AC Theory

Instantaneous Power

For aresistive load:

p =vi = 2VI sin®(awt) =VI (1-cos(2mt))

200

Sine Wave
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V =120~/2 sin(274t)

| =96+/2 sin(2t)
P = 11520 Watts

P = 23040sin” (2ft)
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AC Theory

Instantaneous Power

For an inductive load: p = Vi =2VIsin(wt) sin(ot —90) = —VI sin(2wt)

Sine Wave

00000

"7 ANVAN N e NTAN
NN NN -
Va AV

_50 <\ 60 / E\\ 240 /\300 /AV 42 / oooooo
NN N N
A\ A G A\ S T

000000

eeeeeee

V =120+/2sin(244t)| |1 =96v2sin(2Aft-90)| | P =—-11520sin(2ft)

@ P =0 Watts ‘
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AC Theory
Instantaneous Power

For a capacitive load: p = Vi = 2VI sin(wt) sin(wt +90) =VI sin(2wt)

Sine Wave
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1 AN AN
. //\§\ N/ \/ ///\\ N/ \ / |l

Amplituc

00000000

000000

eeeeeee

V =120+/2sin(24ft)| |1 =96+2sin(24t+90)| P =11520sin(2xft)

@ P = 0 Watts ‘
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AC Theory — Complex Circults

Amplitude (Current)

¢ V
- | =

v \/R2+(0)L—£)2

Phase (Current)

_(a)L_%)_
R

v, @ = arctan
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AC Theory — Instantaneous Power

Sine Wave
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V =120+/2 sin(274t) | =96+/2 sin(2Aft — 60)
P =VI =23040(cos(60°) + cos(4xft —60°)) =19953 - 23040 cos(4zft — 60°)
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Three Phase Power
Blondel's Theorem

If energy be supplied to any system of conductors
through N wires, the total power in the system is
given by the algebraic sum of the readings of N

wattmeters, so arranged that each of the N wires
contains one current coll, the corresponding voltage
coll being connected between that wire and some
common point. If this common point is on one of the
N wires, the measurement may be made by the use
of N-1 wattmeters.




Three Phase Power
Blondel's Theorem

« Simply — We can measure the power in a
N wire system by measuring the power In
N-1 conductors.

* For example, in a 4-wire, 3-phase system
we need to measure the power in 3
circuits.




Three Phase Power
Blondel's Theorem

e |f a meter Iinstallation meets Blondel’s
Theorem then we will get accurate power
measurements under all circumstances.

* |f a metering system does not meet
Blondel's Theorem then we will only get
accurate measurements Iif certain
assumptions are met.




Blondel’s Theorem

l Form 5S
1 =k 1 .
Line Load s N
2 7/ \
=Y 3 / \
] | :
\ J
\ /
\ /
N _/_/
4 Meter InErFaI Wiring
)% ™. q Front View
//~U 0 0 0=\
:’ )\ .
B 5 11 « Three wires
\\i | /’ ; « Two voltage measurements with
N v one side common to Line 2
=1  Current measurements on lines
. 1&3.
Three-Phase ' ) ..
Three-Wire Delta Connections to Socket + This satisfies Blondel’s
With Two CTs Front View Theorem.
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Blondel’s Theorem

1 af 1 Form 5§
[] ——
2 2 /’/ \‘\\
Li Load /
me3 o 3 03 F N,
o ; \
N Neutral N | \
L h |
' \ /
\ /
N\ /
N \\\“ _/'/
/,/.’41 0\ ot view
! \
[ - ,
| § }1 « Four wires
\(ﬂ ;/ « Two voltage measurements to
‘ \T“T _ T neutral
' « Current measurements on lines 1 &
C tions to Socket = i
onnections to Socke 3. How about line 27
Three-Phase This DOES NOT satisfy Blondel’s
Four-Wire Wye Theorem.

With Two Equal-Ratio CTs
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Blondel’s Theorem

* In the previous example:
= What are the “ASSUMPTIONS"?
= When do we get errors?

« What would the “Right Answer” be?
Py =V,.1,cos(d,)+V,1,cos(g,) +V,I cos(b,)

 What did we measure?
P, =V.ll,cos(6,)—1,cos(6,)]+V.[I, cos(b,)— 1, cos(b,)]




Blondel’s Theorem




Blondel’s Theorem

* Phase B power would be:
= P=VDb Ib cos6

* But we aren’'t measuring Vb

« \What we are measuring Is:
= |bVacos(60- 0) + IbVccos(60+ 0)

» cos(a + B) = cos(a)cos(PB) - sin(a)sin(p)
» cos(a - B) = cos(a)cos(B) + sin(a)sin(p)
e SO




Blondel’s Theorem

 Pb=1bVa cos(60-0) + Ib Vc cos(60+ 0)
* Applying the trig identity

= |[bVa(cos(60)cos(B) + sin(60)sin(0))

IbVc (cos(60)cos(B) - sin(60)sin(0))

= |b(Va+Vc)0.5cos(0) + Ib(Vc-Va) 0.866sin(0)
« Assuming

= Assume Vb =Va=Vc

= And, they are exactly 120° apart

* Pb =1b(2Vb)(0.5c0s0) = IbVbcos6




Blondel’s Theorem

e If Va # Vb # Vc then the error Is

* OoError =
-Ib{(Va+Vc)/(2Vb) - (Va-Vc) 0.866sin(6)/(Vbcos(0))

How big is this in reality? If
Va=117, Vb=120, Vc=119, PF=1 then E=-1.67%
Va=117, Vb=116, Vc=119, PF=.866 then E=-1.67%




Blondel’s Theorem

Power Measurements Handbook

non-
Blondel
Condition %V %I Phase A Phase B
% Err
Imb Imb \' ¢van | dian \' ¢dvbn | ¢ibn

All balanced 0 0 120 o | 100 | o | 120 | 18 | 100 180 0.00%
Unbalanced voltages PF=1 18% | 0% 108 o | 100 | o | 132 | 18 | 100 180 0.00%
Unbalanced current PF=1 0% | 18% | 120 0 90 o | 120 | 180 | 110 180 0.00%
Unbalanced V&I PF=1 5% | 18% | 117 0 90 o | 123 | 180 | 110 180 -0.25%
Unbalanced V&I PF=1 8% | 18% | 110 0 90 o | 120 | 180 | 110 180 -0.43%
Unbalanced V&I PF=1 8% | 50% | 110 0 50 o | 120 | 180 | 100 180 -1.43%
Unbalanced V&I PF=1 18% | 40% | 108 0 75 o | 132 | 180 | 125 180 2.44%
g:ff'i?:ezdp‘gtages 18% | 0% 108 0 100 | 30 | 132 | 180 | 100 210 0.00%
g:fff:acfdpgz"e”t 0% | 18% | 120 0 90 | 30 | 120 | 180 | 110 210 0.00%
g;’fff:acidpgs" 18% | 18% | 108 0 90 | 30 | 132 | 180 | 110 210 -0.99%
g:fff:acfdpgf' 18% | 40% | 108 0 75 | 30 | 132 | 180 | 125 210 -2.44%
g::la'z';:idp‘gtages 18% | 0% 108 0 100 | 60 | 132 | 180 | 100 210 2.61%
E::’ff:acidpzz"e"t 0% | 18% | 120 0 90 60 | 120 | 180 | 110 210 0.00%
g:flaf:acidpgf' 18% | 18% | 108 0 90 | 60 | 132 | 180 | 110 210 -3.46%
E::’ff::ii!f" 18% | 40% | 108 0 75 60 | 132 | 180 | 125 210 -4.63%
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AC Theory — Power

e Powerisdefinedas P =VI

« Since the voltage and current at every point in
time for an AC signal is different, we have to
distinguish between instantaneous power and
average power. Generally when we say “power’
we mean average power.

* Average power is only defined over an integer
number of cycles.

)




Harmonics

Curse of the Modern World

* Every thing discussed so far was based on
“Linear” loads.

= For linear loads the current is always a simple
sine wave. Everything we have discussed is
true.

* For nearly a century after AC power was In
use ALL loads were linear.

* Today, many loads are NON-LINEAR.




Harmonic Load Waveform

Six Pole Motor

Eq.#  Quantity Phase A
250 35000
1 V(rms) (Direct Sum) 100 = PaVoliage
) 20 === Pa Current
2 I(rms) (Direct Sum) 108 — b P / \ 125000
3 V(rms) (Fourier) 100 150 ——PaVAR
. 1 15000
4 I(rms) (Fourier) 108 " / \
5  Pa=( V({)(t)dt) 10000 \ f\/ /\\/\\ 0
50 \
6  Pb="%5Vnincos(d) 10000 / A\
7 Q =%2) VnlInsin(0) 0.000 0 “‘.v . = 5000
\ / 60 120 &\ / 0
—_ N N\
8 Sa = Sqrt(P"2 +Q"2) 10000 I B -
9 Sb=\Vrms*Irms(DS) 10833 \Y\ /y /
100
10  Sc =Vrms*Irms(F) 10833 1 25000
13  PF=Pa/Sa 1000 W \/
14 PF=Pb/Sb 0923 0
15 PF=Pb/Sc 0.923

-250 -45000




Harmonic Load Waveform

10
13
14

15

Quantity

V(rms) (Direct Sum)
I(rms) (Direct Sum)
V(rms) (Fourier)
I(rms) (Fourier)

Pa = (] V(t)I(t)dt)

Pb =2 VnIncos(0)
Q = %2> VnInsin(B)
Sa = Sqrt(P2 +Q"2)
Sb = Vrms*Irms(DS)
Sc = Vrms*Irms(F)
PF = Pa/Sa

PF = Pb/Sb

PF = Pb/Sc

Phase A

100
108
100
108
10000
10000
0.000
10000
10833
10833
1.000
0.923

0.923

« Important things to note:

Because the voltage is NOT
distorted, the harmonic in the
current does not contribute to
active power.

It does contribute to the
Apparent power.

Does the Power Triangle hold

S?=./P?+Q?

There is considerable
disagreement about the
definition of various power
guantities when harmonics are
present.




3 Phase Power Measurement

* We have discussed how to measure and
view power guantities (W, VARs, VA) In a
single phase case.

 How do we combine them in a multi-phase
system?

 Two common approaches:

= Arithmetic
= Vectorial




3 Phase Power Measurement

> > >




3 Phase Power Measurement

* VAR and VA calculations can lead to some

strange results:
= |f we define

VA = \/(VVA +Wse +We)? + (Qa+ Qs + Qc)’

W

VA

100

100

120

55

132

120

-55

132

Arithmetic VA

364

Vector VA

340

>
- Vector VA SP\Q

N
7

Arithmetic VA Sy
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Questions and Discussion

Bill Hardy

TESCO - The Eastern Specialty Company
Bristol, PA
215-688-0298 (cell)
215-785-2338

This presentation can also be found under Meter
Conferences and Schools on the TESCO website:
www.tesco-advent.com
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