

New Challenges for the Meter Shop

Prepared by Bill Hardy, TESCO

For North Carolina Electric Meter School Tuesday, June 27, 2017 at 8:00 a.m.

The Past

- Meters were simple energy measurement devices
- Meter shops concentrated on accuracy measurements
- New meter installations were "growth" related and proceeded at a "reasonable pace"

Oh my! Has that ever changed!

Today

- Meters are complex communications devices
- Meters have internal disconnect capability
- Loads are more complex and variable
- With massive AMI deployments we are installing 10's of thousands if not 100's of thousands of meters all at one time.
- The actual meter metrology may be the least of the issues for the deployment.

Compounding Issues

- Fewer meter techs in the field and in the shop than there were 25 years ago
- Acute shortage of experienced techs growing as industry experiences a wave of retirements
- Experienced "METER" techs may not be "COMMUNICATIONS" techs
- Significantly more features under glass in every AMR and AMI system being considered or deployed

Why do AMI meters fail?

Looking back at various deployments What are the failures that we see?

Meter functional test failures including but not limited to;

- Incorrect firmware
- Bad settings
- Alarms and errors that do not clear
- Communication test failures
- Bad tables
- Failed disconnect switches

What is the right approach to testing?

- Testing a small random sample of meters for accuracy is not a good solution for these problems
- New types of testing approaches address these issues more efficiently.

The Pendulum Starts to Move

- Over the last few years these challenges have clearly come into focus.
- Five years ago utilities were just starting to use "meter farms" for pre-deployment testing
- Here's a meter farm circa 2012
- The industry learned that testing significant numbers of AMI/AMR meters in controlled conditions was a valuable activity.

Meter Farms

 Today many companies are installing truly large scale meter farm facilities

Meter Qualification Testing

- While meter farms provide large volume testing, their ability to control test parameters are fairly limited.
- In the real world, loads and operating conditions are growing more complex every day.
- One has to be sure that not only the metrology function but also the communications capabilities of meters function through these real world conditions.

Meter Qualification Testing

- What is qualification testing?
 - Test that the meter functions completely.
 - Program the meter with the latest firmware.
 - Validate communications functionality.
 - Run the meter under widely varying conditions
 - Vary voltage
 - Vary current
 - Generate transients
 - Generate dropouts

Slide 10

New Energy Definitions

- At the moment there is no non-sinusoidal definition for VA
- New ANSI Standard coming very soon

C12.31

American National Standard

for Electricity Meters— Measurement of VA and Power Factor

RMS Voltage

Eq. 4.1.4.1
$$V(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right)$$
 Waveform

Eq. 4.2.4.1
$$V = \frac{1}{T} \int_0^T V^2(t) dt$$
 Basic Definition

Eq. 4.2.4.2
$$V = \sqrt{\frac{1}{N} \sum_{n} V_{n}^{2}}$$

Time Domain

$$_{3} \qquad V = \frac{1}{\sqrt{2}} \left[\sum_{n} (a_{vn}^{2} + b_{vn}^{2}) \right]^{1/2}$$

Frequency Domain

Slide 12

RMS Current

Eq. 4.1.4.2
$$I(t) = \frac{c_0}{2} + \sum_{n=1}^{\infty} \left(c_n \cos(n\omega_0 t) + d_n \sin(n\omega_0 t) \right)$$
Waveform

Eq. 4.2.2.1
$$I = \frac{1}{T} \int_0^T I^2(t) dt$$
 Basic

Basic Definition

Eq. 4.2.2.2 $I = \sqrt{\frac{1}{N} \sum_{n} I_{n}^{2}}$

Time Domain

Frequency Domain

Eq.4.2.2.3

$$I = \frac{1}{\sqrt{2}} \left[\sum_{n} (c_{vn}^2 + d_{vn}^2) \right]^{1/2}$$

Slide 13

Active Power

Eq. 4.2.3.1
$$P = \frac{1}{T} \int_0^T V(t) I(t) dt$$
 Basic Definition

Eq. 4.2.3.2
$$P = \frac{1}{N} \sum_{i=0}^{i=N-1} V_i I_i$$

Time Domain

$$P = \frac{1}{2} \sum_{n} \left| \vec{V_n} \bullet \vec{I_n} \right| = \frac{1}{2} \sum_{n} (a_n c_n + b_n d_v)$$

Eq. 4.2.3.3
$$= \frac{1}{2} \sum_{n} V_n I_n \cos(\theta_n)$$
Frequency Domain

Apparent Power

Eq. 4.2.3.1
$$S = \sqrt{\frac{1}{T} \int_0^T V^2(t) dt} \sqrt{\frac{1}{T} \int_0^T I^2(t) dt}$$

Basic Definition

Eq. 4.2.3.2
$$S = VA = \sqrt{\frac{1}{N} \sum_{i=0}^{i=N-1} V_i^2 \bullet \frac{1}{N} \sum_{i=0}^{i=N-1} I_i^2}$$

Time Domain

Eq. 4.2.3.3
$$S = \frac{1}{2} \left[\sum_{n} (a_n^2 + b_n^2) \sum_{n} (c_n^2 + d_n^2) \right]^{1/2}$$
 Frequency Domain

Harmonic Load Waveforms

ANSI C12.20 now addresses harmonic waveforms as well as sinusoidal.

Questions and Discussion

Bill Hardy

TESCO – The Eastern Specialty Company Bristol, PA 1-800-762-8211

This presentation can also be found under Meter Conferences and Schools on the TESCO web site: <u>www.tesco-advent.com</u>

