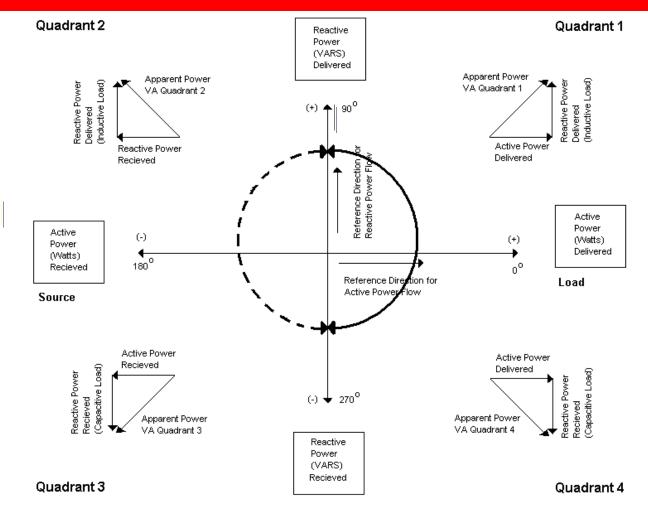
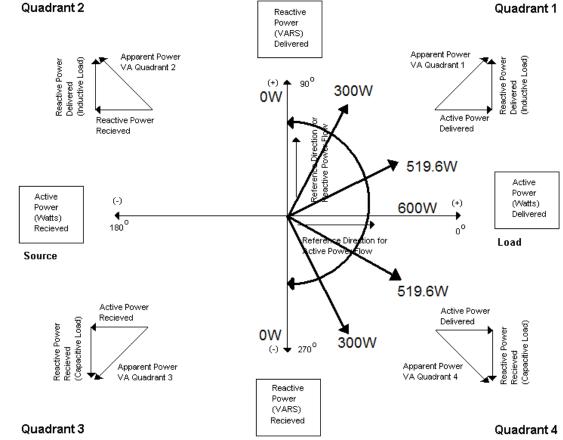

The Intelligence to Power Your Future

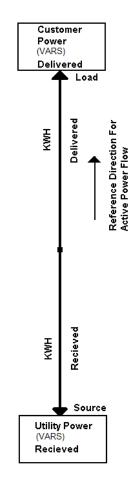
KiloVAR & Kilovolt Ampere Metering

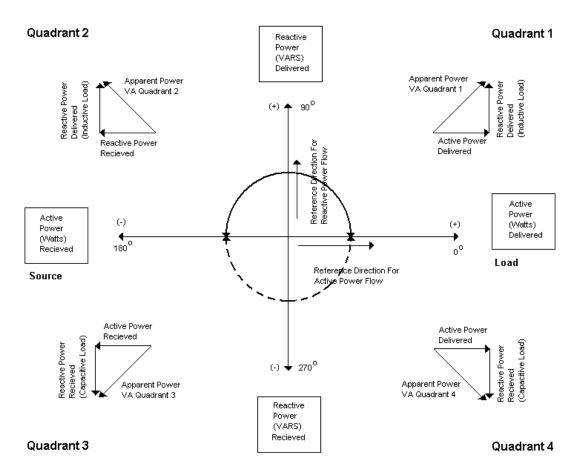




Delivered KWH Received KWH Net Delivered KWH Net Received KWH Total (Absolute) KWH

Note: Once the reference direction is established for the metering point, it must not change. In this relationship, **CLOCKWISE** ROTATION has been used.

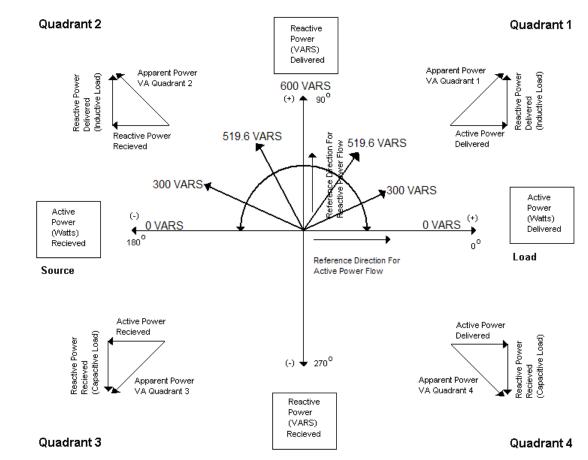



KWH Meters

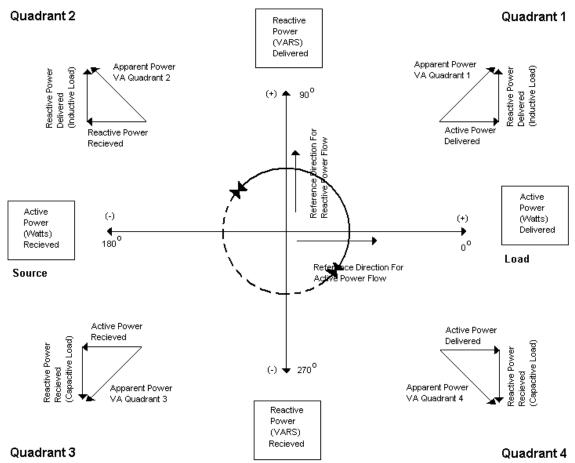
★ E = 120V, I = 5A, PF = .866 ∟ 30⁰
 W = E*I*PF(Cos ∟ 30⁰)
 W = 519.6

KVARH Meters

- Delivered KVARH (Q1 + Q2)
- Received KVARH (Q3 + Q4)
- Quadrant 1
- Quadrant 2
- Quadrant 3
- Quadrant 4
- ♦ Net KVARH (Q1 + Q2) (Q3 + Q4)
- KVARH Delivered Power (Q1 + Q4)abs
- ♦ KVARH Received Power (Q2 + Q3) abs
- ♦ KVARH Delivered Power (Q1 Q4)net
- ♦ KVARH Received Power (Q3 Q2)net



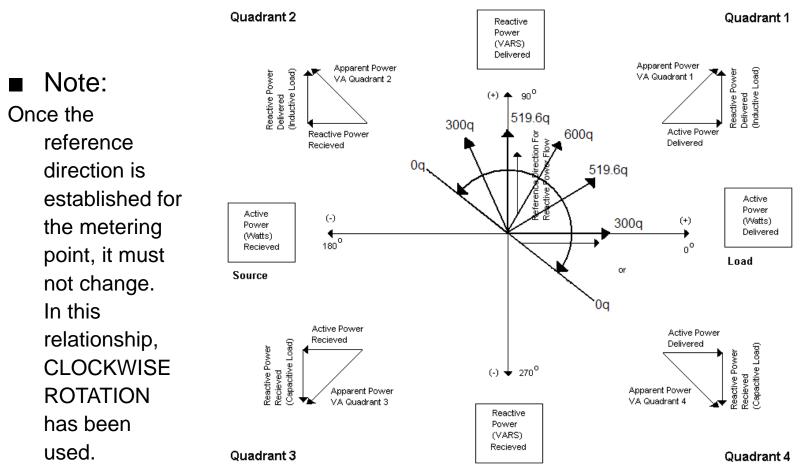
KVARH Meters


- All of the Values from the previous slide, CONTROLS
- Power Factor Results
- Apparent Power (Kva) Values
- Effects Revenue (Billing) Values

Note: Once the reference direction is established for the metering point, it must not change. In this relationship, **CLOCKWISE** ROTATION has been used.

Why use Q-hour metering?

Technology of the time (Mechanical meters)


Q-hour metering systems could produce the maximum amount of information for the minimum investment ("Dollars"). Note: Nets Kvarh Delivered & Received.

- Requires only two meters (Kwh & Kqh)
- Requires no phase shifting transformer
- Requires only a two channel data recorder
- Provides data required for revenue billing

Nets delivered and received Kvarh

- This will automatically give equal credit for Received Kvar
- Allows for Power Factor and Kva Calculations

Multifunction Meter's Possible Kqh Registers

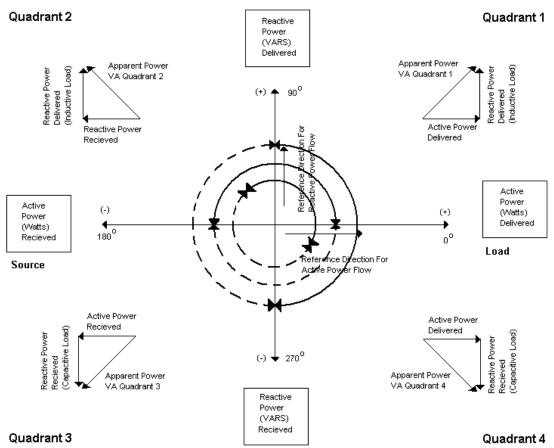
- Kqh Delivered Power
 - Net Kvarh Delivered Power (Q1-Q4)
 - Limited to 30 degrees Leading current (Q4)
- Kqh Received Power
 - Net Kvarh Received Power (Q3-Q2)
 - Limited to 30 degrees Leading current (Q2)

How to use data from the Kqh meter Formula for Kvars using a Kqh metering package

Vars = $(2q - Watts) / \sqrt{3}$

 The following relationships may be used to determine the net affect on Kvars for <u>leading</u> and <u>lagging</u> current over a period of time. Requires having a Kwh meter.

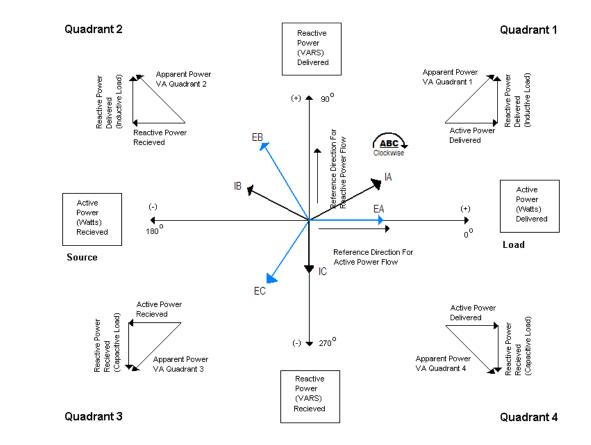
If (2q - Watts) is Positive (+), Vars (Q1) Lagging Current If (2q - Watts) is Zero, No Vars If (2q - Watts) is Negative (-), Vars (Q4) Leading Current If q/W > 0.5, Vars are (Q1) Lagging Current If q/W = 0.5, No Vars If q/W < 0.5, Vars are (Q4) Leading Current


How to use data from the Kqh meter Formula for Kvars using a Kqh metering package

Vars =
$$(2q - Watts) / \sqrt{3}$$

Example 1:
Kvarh = (2 x 259.5 Kqh – 259.5 Kwh / 1.732 Kvarh = 149.8

Example 2:
Kvarh = (2 x 259.5 Kqh – 519 Kwh) / 1.732
Kvarh = 0



Quadrant Conventions As Used By the Quad 4 Meter

Note: The image to the right, based on capacitive and inductive loads, is for quadrant definitions only. The Quad 4 Meter is not sensitive to phase rotation.

Comparison Tests

Q-hour metering verses Kvarh metering

- A one (1) hour test will be run.
- For the first 30 minutes the current will lag by 30 degrees.
- For the last 30 minutes the current will lead by 30 degrees.
- The voltage will be set at 120 volts.
- The current will be at 5 amps.
- The phase angle will be at 30 degrees for the test.
- All of the values will be multiplied by 1000.

Reactive Package 1 (new installation) Using 1 Kwh meter & 1 Del. Kvarh meter

٠	Results Package 1		
٠	Time 00:00	00:30	01:00
	Kwh Reading 00000	259.5	519.0
•	Kvarh (Q1+2)00000	150.0	150.0
•	Calculated		
•	Kvah	300.0	540.2
٠	Pf	0.86	0.96

Reactive Package 2 (old installation) Using 1 Kwh meter & 1 Kqh meter

	Results Package 2		
	Time 00:00	00:30	01:00
•	Kwh Reading 00000	259.5	519.0
•	Kqh Reading 00000	259.5	259.5
•	Calculated		
•	Kvarh	150.0	0.000
•	Kvah	300.0	519.0
٠	Pf	0.86	1.00

Test Comparison

Test results

- New Meter 519 Kwh 150 Kvarh 540 Kvah 000 Kqh 0.96Pf
- Old Meter 519 Kwh 000 Kvarh 519 Kvah 259 Kqh 1.00Pf
- Why are they not the same?
 - The new meter is not looking at the Kvarh in (Q4) Leading current
 - The old meter (Kqh) nets the Kvarh between (Q1 and Q4)
- Could there be other reasons for the difference (change)? YES
 - The UOM code in the data collection system didn't get changed to Kvarh
 - The customer's load had changed
 - The new meter had been wired incorrectly

Reactive Package 3 Using 1 Kwh meter & 2 Kvarh meters Delivered - Received Kvarh

•	Results Package 3		
•	Time 00:00	00:30	01:00
•	Kwh Reading 00000	259.5	519.0
•	Kvarh (Q1-4) 00000	150.0	0.000
•	Calculated		
•	Kvah	300.0	519.0
•	Pf	0.86	1.00

Reactive Package 4 Using 1 Kwh meter & 2 Kvarh meters Delivered + Received Kvarh

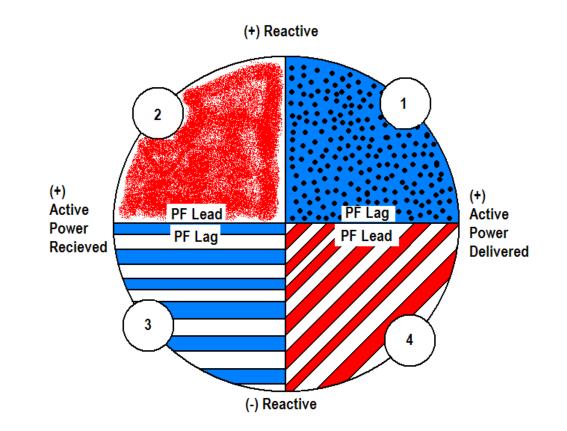
•	Results Package 4		
•	Time 00:00	00:30	01:00
•	Kwh Reading 00000	259.5	519.0
•	Kvarh (Q1+4)00000	150.0	300.0
•	Calculated		
•	Kvah	300.0	600.0
•	Pf	0.86	0.86

Comparison Tests

Expected test results

Kvah

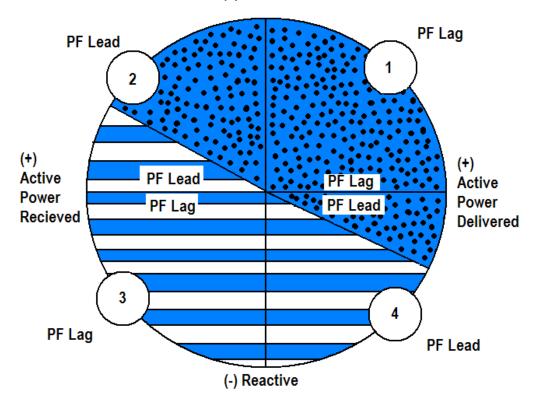
- 120 Volts x 5 Amps x 1000 x 1 hour = 600 Kvah
- Kwh
- 120 Volts x 5 Amps x 0.8666 x 1000 x 1 hour = 519 Kwh
- Kvarh
- 120 Volts x 5 Amps x 0.5 x 1000 x 1 hour = 300 Kvarh
- Power Factor
- ♦ 519 Kwh / 600 Kvah = 0.86 Pf (Average)


Test Comparison

Expected test results

- Package 1 519 Kwh 150 Kvarh 540 Kvah 0.96 Pf
- Package 2 519 Kwh 000 Kvarh 519 Kvah 1.00 Pf
- Package 3 519 Kwh 000 Kvarh 519 Kvah 1.00 Pf
- Package 4 519 Kwh 300 Kvarh 600 Kvah 0.86 Pf
- Expected 519 Kwh 300 Kvarh 600 Kvah 0.86 Pf
- Note: Package 1, uses only a Delivered Kvarh meter
- Package 2, uses a Kqh meter
- Package 3, nets both the Del. & Rec. Kvarh meters
- Package 4, sum (Abs) the Del. & Rec Kvarh meters
- Which is correct?

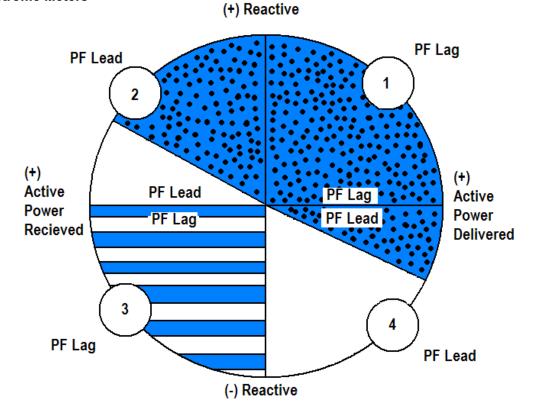
Power Factor Lead/Lag


Power Factor is Relative to Active Power

Power Factor Lead/Lag

Mechanical Meters

(+) Reactive



KqH Is Always Relative To Active Power

Power Factor Lead/Lag

Electronic Meters

KqH Is Always Relative To Active Power

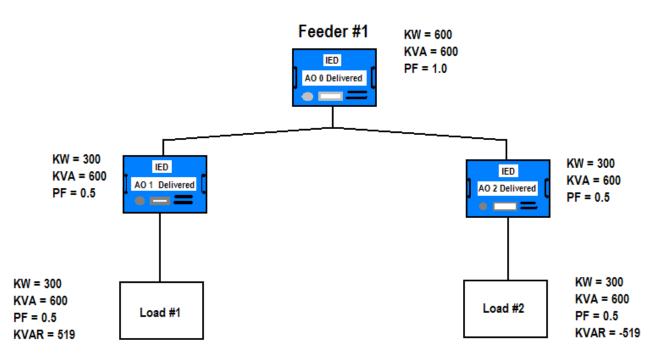
Power Factor Metering

What is Power Factor

$\mathsf{PF} = \mathsf{Cos} \ \sqsubseteq \Theta$

PF = The Ratio of W / VA

PF Will Always be a Number Between 0.0 and 1.0



Volt-Ampere

 In AC Circuits where the Power Factor is other than Unity, the Volt-Amperes <u>equal</u> the square root of Watts squared plus the reactive Volt-Amperes squared.

Summing Power Values Single Load

KW (Total) = 300 + 300 = 600 KVA (Total) = 600 + 600 = 1200 PF = (0.5 + 0.5) / 2 = .05

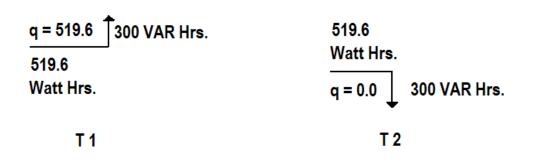
Review
Vars from Q-Meter
VARS =
$$((2 * q) - Watts) / \sqrt{3}$$

VARS = ((2 * 519.6) − 1039.2) / √(3)

VARS = 0

How Many Vars ???

- 15 Minute Interval
 - 7 ½ Minutes

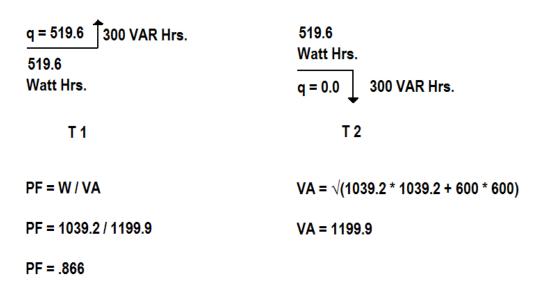

300 VARS q1 = 519q

7 ½ Minutes 300 VARS q4 = 0q

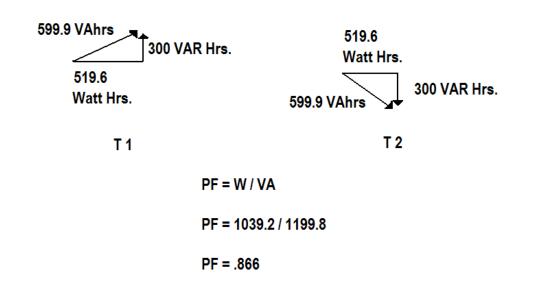
VARS = 300 q1VARS = 300 q4Total = 600 VARS

Power Factor Using q Hours

Power Factor Using VAR-Hours

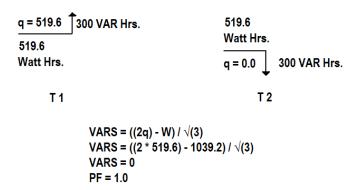

(Using 1 Meter)

q = 519.6300 VAR Hrs.519.6
Watt Hrs.519.6
Watt Hrs.q = 0.0300 VAR Hrs.T1T2PF = W / VAVA = $\sqrt{(1039.2 \times 1039.2 + 300 \times 300)}$ PF = 1039.2 / 1081.6VA = 1081.6PF = 96


Power Factor Using VAR-Hours

(Using 2 Meters)

Power Factor Using VA Hours $VA = VA_{T_1} + VA_{T_2}$

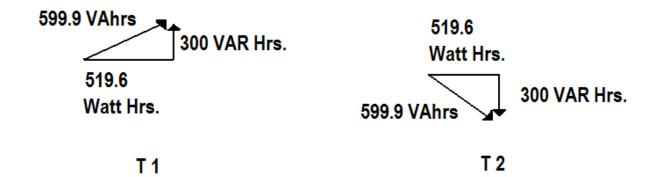


Power Factor Answers

- ◆ A. PF = 1.0 (q-Hour)
- ◆ B. PF = .96 (1-VAR-Hour)
- ◆ C. PF = .866 (2-VAR-Hour)
- ◆ D. PF = .866 (Sum VA-Hour)


KVA Metering Using q Hours VA = $\sqrt{(Watts^2 + VARS^2)}$

VA = $\sqrt{(Watts^2 + VARS^2)}$ VA = $\sqrt{(1039.2^2 + 0^2)}$ VA = 1039.2 Slide 42


KVA Metering Using VAR Hours (Using 1 Meter) $VA = \sqrt{(Watts2 + VARS2)}$

$$VA = \sqrt{(Watts^2 + VARS^2)}$$

 $VA = \sqrt{(1039.2^2 + 300^2)}$
 $VA = 1081.6$

KVA Metering Using VAR Hours (Using 2 Meters) $VA = \sqrt{(Watts2 + VARS2)}$

$$VA = \sqrt{(Watts^2 + VARS^2)}$$

 $VA = \sqrt{(1039.2^2 + 600^2)}$
 $VA = 1199.9$

KVA Answers

- ♦ A. 1039.2 (q-Hour)
- ◆ B. 1081.6 (1-VAR-Hour)
- ◆ C. 1199.9 (2-VAR-Hour)
- ◆ D. 1199.9 (Sum VA-Hour)

KVA METERING			
599.9 KVAH 519.6 KWH KQH = 519.6	69-	519.6 59. KVARH	$\frac{19.6 \text{ KWH}}{300}$ $\frac{300}{444} \text{ KVARH}$ $(\text{QH} = 0$
T1	Т2		Т3
KWH = 1339.2 K((A)KVARH = 519.6			$\frac{1119.6)-1339.2}{\sqrt{3}}$ $\frac{1339.2}{1436.3}$
(B)KVARH = 819.6		PF =	0.932
(C)KVARH = 1119.		(I)PF =	1 <u>339.2</u> 1570
(D)KVAH = 1436.3 (D)KVAH = 1436.3	² + 1339.2 ²	PF =	0.852
(E)KVAH =√819.6 KVAH = 1570	² +1339.2 ²		1 <u>339.2</u> 1745.5
(F)KVAH = √1119.6 KVAH = 1745.50		PF = (K)PF =	
(G)KVAH = 599.9+5 KVAH = 1799.70		PF =	1799.9 0.744

KVA Answers

- D.1436.3 KVAH PF = 0.93 (q-Hour)
- E. 1570.0 KVAH PF = 0.85 (1 VAR-Hour)
- F. 1745.5 KVAH PF = 0.76 (2 VAR-Hour)
- G.1799.7 KVAH PF = 0.74 (Sum VA-Hour)

