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THEN – NOW – TOMORROW?

METERS

First Meters mid-1990s Westinghouse 1905 2005

2006 2014 2025 ???
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THEN – NOW – TOMORROW?

COMMUNICATIONS

THEN NOW
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WHY DO THESE CHANGES MATTER?

• Changes to our loads have changed the 

basic computations of metering

• When loads were linear the power 

triangle was all we needed to know
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WHY DO THESE CHANGES MATTER?

Today’s loads look more like these
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WHY DO THESE CHANGES MATTER?

Today’s loads look more like these
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WHY DO THESE CHANGES MATTER?

Today’s loads look more like these
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THREE PHASE POWER
INTRODUCTION

Van

Vcn

Vbn

Phase A

Phase B

Phase C

Neutral

(Ground)

Basic Assumptions

•Three AC voltage sources

•Voltages Displaced in time

•Each sinusoidal

•Identical in Amplitude
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AC THEORY – SINE WAVE

max)( VSinV •= 

120=rmsV

169=pkV

707.0max•= VVRMS
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THREE PHASE POWER
AT THE GENERATOR

Three voltage vectors 

each separated by 

120°.

Peak voltages 

essentially equal.

Most of what makes three phase systems seem complex is what we do to this 

simple picture in the delivery system and loads.

VcnVan Vbn
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THREE PHASE POWER
BASIC CONCEPT – PHASE ROTATION
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Phase Rotation:

The order in which the 

phases reach peak 

voltage.

There are only two 

possible sequences:

A-B-C  (previous slide)

C-B-A  (this slide)

Phase rotation is important because the direction of rotation of a three phase 

motor is determined by the phase order.
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AC THEORY - PHASE

Sine Wave
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THREE PHASE THEORY
PHASORS AND VECTOR NOTATION

• Phasors are a graphical means of representing the 

amplitude and phase relationships of voltages and 

currents.

V = sin(θ)
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THREE PHASE POWER
PHASORS AND VECTOR NOTATION

• As stated in the Handbook of Electricity Metering, by 

common consent, counterclockwise phase rotation has 

been chosen for general use in phasor diagrams.
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THREE PHASE POWER
PHASORS AND VECTOR NOTATION

• The phasor diagram for a simple 3-phase system has 

three voltage phasors equally spaced at 120° intervals.

• Going clockwise the order is A – B – C.
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THREE PHASE THEORY
SYMBOLS AND CONVENTIONS

• Systems formed by 

interconnecting secondaries 

of 3 single phase 

transformers.

• Generally primaries are not 

show unless details of actual 

transformer are being 

discussed.

A

B

C

N

Ia

Ib

Ic
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THREE PHASE THEORY
SYMBOLS AND CONVENTIONS

• Often even the coils are not 

shown but are replaced by 

simple line drawings
A

B
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Ia

Ib

Ic
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3 PHASE, 4-WIRE  “Y” SERVICE
0° = UNITY POWER FACTOR

• Three 
Voltage 
Phasors

• 120° Apart

• Three 
Current 
Phasors

• Aligned with 
Voltage at 
PF=1



Slide 24

SYMBOLS AND CONVENTIONS
LABELING

• Voltages are generally labeled Va, Vb, Vc, Vn for the 

three phases and neutral

• This can be confusing in complex cases

• The recommended approach is to use two 

subscripts so the two points between which the 

voltage is measured are unambiguous

B
C

A

N Vca

Vbn

Van

Vcn

Vab

Vbc

Vab means voltage at “a” as 

measured relative to “b”.
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Source

B

C

N

Ia

Ib

Load

A

B

C

N

A
208

120

120

2 PHASE, 3-WIRE  “Y” SERVICE
“NETWORK CONNECTION”

Single phase variant of the service.

Two voltage sources with their returns connected to a common point.

Provides 208 rather than 240 volts across “high side” wires.
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2 PHASE, 3-WIRE  “NETWORK” SERVICE

• Two Voltage 
Phasors

• 120° Apart

• Two Current 
Phasors

• Aligned with 
Voltage at 
PF=1
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Source

B
C

Ia

Ib

Ic
Load

A

B
C

A

240

240

240

3 PHASE, 3-WIRE  DELTA SERVICE

Common service type for industrial customers.  This service has NO 

neutral.

•Voltages normally measured relative to phase B.

•Voltage and current vectors do not align.

•Service is provided even when a phase is grounded.



Slide 28

3 PHASE, 3-WIRE  DELTA SERVICE
 RESISTIVE LOADS

• Two Voltage 
Phasors

• 60° Apart

• Two Current 
Phasors

• For a 
resistive load 
one current 
leads by 30° 
while the 
other lags by 
30°
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3 PHASE, 3-WIRE  DELTA SERVICE

 RESISTIVE LOAD

• Two Voltage 
Phasors

• 60° Apart

• Two Current 
Phasors

• For a 
resistive load 
one current 
leads by 30° 
while the 
other lags by 
30°
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Source

B
C

Ib

Ic

Load

IaA

N

3 PHASE, 4-WIRE  DELTA SERVICE

Common service type for industrial customers.  Provides a residential 

like 120/240 service (lighting service) single phase 208 (high side) and 

even 3 phase 240 V.

•Voltage phasors form a “T” 90° apart

•Currents are at 120° spacing

•In 120/120/208 form only the “hot” (208) leg has its voltage and 

current vectors aligned.
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3 PHASE, 4-WIRE  DELTA SERVICE

 RESISTIVE LOAD

• Three 

Voltage 

Phasors

• 90° Apart

• Three 

Current 

Phasors

• 120° 

apart
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AC THEORY – RESISTIVE LOAD

Sine Wave
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Resistors are measured in Ohms.  When an AC voltage is applied to a resistor, the 

current is in phase. A resistive load is considered a “linear” load because when the 

voltage is sinusoidal the current is also sinusoidal.
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Sine Wave
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AC THEORY – INDUCTIVE LOAD

Inductors are measured in Henries.  When an AC voltage is applied to an inductor, 

the current is 90 degrees out of phase.  We say the current “lags” the voltage.  A 

inductive load is considered a “linear” load because when the voltage is sinusoidal 

the current is also sinusoidal.
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AC THEORY – CAPACITIVE LOAD

AC C
Vrms

Irms
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Capacitors are measured in Farads.  When an AC voltage is applied to a capacitor, 

the current is 90 degrees out of phase.  We say the current “leads” the voltage.  A 

capacitive load is considered a “linear” load because when the voltage is 

sinusoidal the current is sinusoidal.
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AC THEORY – POWER

• Power is defined as: P = VI

• Since the voltage and current at every point 

in time for an AC signal is different, we have 

to distinguish between instantaneous power 

and average power. Generally when we say 

“power” we mean average power.

• Average power is only defined over an 

integral number of cycles.
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TIME OUT FOR TRIG

(RIGHT TRIANGLES)

c

a
Cos =)(

a

b
Tan =)( a

c

b

9 0 °

The Right Triangle:

The Pythagorean theory

 c2 = a2 + b2

c

b
Sin =)(
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AC THEORY – DEFINITIONS

• Inductive Reactance – The inductive opposition in a AC circuit = XL

• Capacitive Reactance – The capacitive opposition in a AC circuit = 
XC 

• Impedance – Total opposition to the flow of current in an AC circuit 
which includes resistance, XL and XC. 

▪ Impedance = Z = √ [R2 + (XL – XC)2]

• Resistive Loads – Light bulbs, heater, etc

• Inductive Loads – Electric motors, fans, air conditioners, etc.

• Capacitive Loads – Capacitors used to compensate for inductive 
loads
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AC THEORY – POWER TRIANGLE
(SINUSOIDAL WAVEFORMS)

If V = Sin(ωt) and I = Sin(ωt - θ)  (the load is linear) then:

 Active Power = VICos(θ) Watts

 Reactive Power = VISin(θ) VARs

 Apparent Power = VI  VA

 Power Factor = Active/Apparent = Cos(θ)

Watts

V
A

R
s
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AC THEORY – ACTIVE POWER
(REAL POWER (KW))

• In a circuit that contains only resistance:
– Real Power (kW) = VRMS * IRMS

• In a circuit that contains resistance and reactance:
– Real Power (kW) = VRMS * IRMS * COS (θ)
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AC THEORY – APPARENT POWER
(KVA)

• Kilo-Volt-Amperes (kVA) are the product of Volts and the Total Current which 

flows because of the voltage.

• In a circuit that contains only resistance, KVA (apparent power) is equal to the 

Real Power (kW). 

• When reactance is introduced into a circuit, and VRMS and IRMS are measured 

quantities, then:  

• kVA = VRMS * IRMS

• In a circuit where only Real Power (kW) and Reactive Power (kVAR) are 

measured quantities, then:

• kVA = √(kW2 + kVAR2)



Slide 41

AC THEORY – REACTIVE POWER 
(KVAR)

• Reactive Volt Amperes are the product of the total Volt-

Amperes and the Sine of the angle of displacement 

between Voltage and Current.

• Reactive Power (kVAR) = VRMS * IRMS * SIN(θ)

• kVAR reduces the efficiency in the distribution system, 

and is NOT used to deliver active power (kW) to the load.
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AC THEORY – REACTIVE POWER
(KVAR ANALOGY)
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AC THEORY
INSTANTANEOUS POWER

Sine Wave
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AC THEORY
INSTANTANEOUS POWER

Sine Wave
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AC THEORY

 INSTANTANEOUS POWER

Sine Wave
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AC THEORY – COMPLEX CIRCUITS
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AC THEORY – INSTANTANEOUS POWER

Sine Wave
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AC THEORY – INSTANTANEOUS 

POWER
From IEEE1459 instantaneous power can be 

written in several forms:

Sine Wave
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THREE PHASE POWER
BLONDEL’S THEOREM

If energy be supplied to any system of conductors 

through N wires, the total power in the system is 

given by the algebraic sum of the readings of N 

wattmeters, so arranged that each of the N wires 

contains one current coil, the corresponding voltage 

coil being connected between that wire and some 

common point.  If this common point is on one of the 

N wires, the measurement may be made by the use 

of N-1 wattmeters.
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THREE PHASE POWER
BLONDEL’S THEOREM

• Simply put – We can measure the power in a N 

wire system by measuring the power in N-1 

conductors.

• For example, in a 4-wire, 3-phase system we 

need to measure the power in 3 circuits.
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THREE PHASE POWER
BLONDEL’S THEOREM

• In practice, Blondel’s Theorem is not strictly 

adhered to in all applications. 

• Meter manufacturers have found ways to design 

meters that allow adequate accuracy without 

the required number of stators. 
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THREE PHASE POWER
BLONDEL’S THEOREM

• One such meter is the common (form 2S) house meter. 

• It is a single stator meter that is specifically designed to meter 

a 3-wire circuit. 
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THREE PHASE POWER
BLONDEL’S THEOREM

• Additionally, other meters may be connected in 

configurations, which may also provide adequate 

levels of accuracy without the required number of 

stators.

• These are often referred to as Non-Blondel 

configurations.
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THREE PHASE POWER
BLONDEL’S THEOREM

Why are Non-Blondel circuits challenging? 

• Makes the assumption that the service voltages 

are balanced.

• The assumption may not be true so there are 

likely to be measurement errors.
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THREE PHASE POWER
BLONDEL’S THEOREM

Why are Non-Blondel meters used? 

• Fewer elements in the meter means lower meter 

costs.

• Fewer PTs and CTs mean lower installation costs.
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THREE PHASE POWER
BLONDEL’S THEOREM

Blondel Compliant
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THREE PHASE POWER
BLONDEL’S THEOREM

Non-Blondel Compliant
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BLONDEL’S THEOREM

Three wires

Two voltage measurements with one 

side common to Line 2

Current measurements on lines 1 & 3.

This satisfies Blondel’s Theorem.
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BLONDEL’S THEOREM

Four wires

Two voltage measurements to neutral

Current measurements are on lines 1 

and 3 but not line 2.

This DOES NOT satisfy Blondel’s 

Theorem.
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BLONDEL’S THEOREM

In the previous example:

▪What are the “ASSUMPTIONS”?

▪When do we get errors?
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BLONDEL’S THEOREM
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BLONDEL’S THEOREM

• Phase B power would be:  

▪P = VbIbCosθ

• But we aren’t measuring Vb 

• What we are measuring is:

▪IbVaCos(60- θ) + IbVcCos(60+ θ)
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BLONDEL’S THEOREM

Pb = IbVaCos(60- θ) + IbVcCos(60+ θ)

Applying the trig identity
▪ IbVa(Cos(60)Cos(θ) + Sin(60)Sin(θ)) 

  IbVc (Cos(60)Cos(θ) - Sin(60)Sin(θ)) 

▪ Ib(Va+Vc)0.5Cos(θ) + Ib(Vc-Va) 0.866Sin(θ) 

Assuming
▪Assume Vb = Va = Vc

▪And, they are exactly 120° apart 

Pb = Ib(2Vb)(0.5Cosθ) = IbVbCosθ
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BLONDEL’S THEOREM

• If Va ≠ Vb ≠ Vc then the error is

• %Error = 

     -Ib{(Va+Vc)/(2Vb) - (Va-Vc) 0.866Sin(θ)/(VbCos(θ))

How big is this in reality?  If

Va=117, Vb=120, Vc=119, PF=1 then E=-1.67%

Va=117, Vb=116, Vc=119, PF=.866 then E=-1.67%
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AC THEORY – POWER

• Power is defined as: P = VI

• Since the voltage and current at every point 

in time for an AC signal is different, we have 

to distinguish between instantaneous power 

and average power. 

• Generally when we say “power” we mean 

average power.

• Average power is only defined over an 

integer number of cycles.
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HARMONICS
CURSE OF THE MODERN WORLD

• Every thing discussed so far was based on 

“Linear” loads.
▪For linear loads the current is always a simple sine 

wave. Everything we have discussed is true.

• For nearly a century after AC power was in 

use ALL loads were linear.

• Today, many loads are NON-LINEAR.
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HARMONICS - DEFINITION

• Non-sinusoidal complex waveforms are constructed by 

“adding” together a series of sine wave frequencies 

known as “Harmonics.” 

• Harmonics is the generalized term used to describe the 

distortion of a sinusoidal waveform by waveforms of 

different frequencies.
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Eq.# Quantity Phase A

1 V(rms) (Direct Sum) 100

2 I(rms) (Direct Sum) 108

3 V(rms) (Fourier) 100

4 I(rms) (Fourier) 108

5 Pa = (∫ V(t)I(t)dt) 10000

6 Pb = ½∑VnIncos(θ) 10000

7 Q = ½∑VnInsin(θ) 0.000

8 Sa = Sqrt(P^2 +Q^2) 10000

9 Sb = Vrms*Irms(DS) 10833

10 Sc = Vrms*Irms(F) 10833

13 PF = Pa/Sa 1.000

14 PF = Pb/Sb 0.923

15 PF = Pb/Sc 0.923

Six Pole Motor
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HARMONIC LOAD WAVEFORM

V = 100Sin(ωt) I = 100Sin(ωt) + 42Sin(5 ωt)
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HARMONIC LOAD WAVEFORM

Eq.# Quantity Phase A

1 V(rms) (Direct Sum) 100

2 I(rms) (Direct Sum) 108

3 V(rms) (Fourier) 100

4 I(rms) (Fourier) 108

5 Pa = (∫ V(t)I(t)dt) 10000

6 Pb = ½∑VnIncos(θ) 10000

7 Q = ½∑VnInsin(θ) 0.000

8 Sa = Sqrt(P^2 +Q^2) 10000

9 Sb = Vrms*Irms(DS) 10833

10 Sc = Vrms*Irms(F) 10833

13 PF = Pa/Sa 1.000

14 PF = Pb/Sb 0.923

15 PF = Pb/Sc 0.923

Important things to note:

▪ Because the voltage is NOT 

distorted, the harmonic in the 

current does not contribute to active 

power.

▪ It does contribute to the Apparent 

power.

▪ Does the Power Triangle hold

▪ There is considerable disagreement 

about the definition of various power 

quantities when harmonics are 

present.

V = 100Sin(ωt) I = 100Sin(ωt) + 42Sin(5 ωt)

22? QPS +=
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3 PHASE POWER MEASUREMENT

• We have discussed how to measure and view power 

quantities (W, VARs, VA) in a single phase case.

• How do we combine them in a multi-phase system?

• Two common approaches:

▪Arithmetic

▪Vectorial
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3 PHASE POWER MEASUREMENT

Arithmetic vs Vectoral 

• Both a magnitude and a direction must be specified for 

a vector quantity. 

• In contrast, a scalar quantity which can be quantified 

with just a number. 

• Any number of vector quantities of the same type (i.e., 

same units) can be combined by basic vector 

operations.
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3 PHASE POWER MEASUREMENT

VAR and VA calculations can lead to some 

strange results:
▪ If we define

PH W Q VA

A 100 0 100

B 120 55 132

C 120 -55 132

Arithmetic VA 364

Vector VA 340

22 )()( CBACBA QQQWWWVA +++++=

Arithmetic VA V S I

Vector VA SPQ
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3 PHASE POWER MEASUREMENT

Arithmetic Calculation - Form 6 – 4 Wire Y Site

Voltages and Currents Aligned at 0°
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3 PHASE POWER MEASUREMENT

Vector Calculation - Form 6 – 4 Wire Y Site

Voltages and Currents Aligned at 0°
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3 PHASE POWER MEASUREMENT

Arithmetic Calculation - Form 6 – 4 Wire Y Site
Currents All shifted by 30°
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3 PHASE POWER MEASUREMENT

Vector Calculation - Form 6 – 4 Wire Y Site

Currents All shifted by 30°
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Actual Field Test Case #1:  Lots of Clues!
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Actual Field Test Case #1:  Lots of Clues!
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What is the problem?There is no problem!

3-Wire Delta load

On a 4-Wire Wye service.

Actual Field Test Case #2
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STANDARDS CHANGES

New Revision of C12.20 in 2015
▪ Polyphase meters tested using polyphase

▪ Recommended 2015, required 2020

▪ Unbalanced load testing required

▪ Full harmonic testing required

▪ 0.1% Accuracy Class added

▪ Specific call out of Non-Blondel applications where C12.20 does not 

apply

▪ Detailed requirements and specs for test outputs added
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STANDARDS CHANGES

New Revision of C12.20 in 2015
▪ Tighter reference condition performance specifications

▪ When using polyphase loading meters must be tested in each 

configuration used
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STANDARDS CHANGES

New Revision of C12.1 in 2015
▪ 0.5% Accuracy Class added

▪ Testing required for unbalanced loads

▪ Testing required under unbalanced conditions

▪ Tighter reference performance requirements

▪ Bi-directional energy flow testing

▪ Extensive update on in-service testing
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STANDARDS CHANGES

New Revision of C12.10 in 2015
▪ Accuracy tests moved here from C12.1

▪ Much broader safety requirements

▪ Coordinated effort with UL2735

▪Utilities exempt from UL2735 but only if they own and install the 

equipment
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STANDARDS CHANGES

New Revision of C12.9 in 2014
▪ Full specifications for test plugs included in standard

▪ Ensures safe operation between all switches and all plugs

▪ previously some combinations produced safety hazards

▪ New barrier requirements between switch elements
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STANDARDS CHANGES

Communications Standards
▪ New C12.19 which replaces C12.18 and C12.19 is in ballot process

▪ Major changes – major controversy has held up approval for two 

years

▪ Standard will still not guarantee inter-operability 

▪ C12.23 the “Compliance Testing” standard is nearly complete
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NEXT GENERATION STANDARDS

ANSI C12.46
▪ New standard in development to replace C12.1 and C12.20

▪ Structured like OIML IR-46

▪ A true digital age standard

▪ Applies to ALL energy measurements

▪ Watts, VA and VAR

▪Contains precise definitions for the quantities based on digitally 

sampled waveforms
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NEXT GENERATION STANDARDS

ANSI C12.46
▪ Covers ALL waveform types

▪ sinusoidal, harmonic, time varying

▪ Defines the meter as everything under the cover

▪ If there is auxiliary functions in the meter they must be fully 

operational during accuracy testing

▪ If a option is added to a meter, it must be tested with the option 

running to remain qualified
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NEXT GENERATION STANDARDS

ANSI C12.46
▪ View of accuracy changes

▪ Currently changes with respect to reference

▪ New approach is absolute error

Philosophy of C12.46 – When a meter is 

claimed to be of a specific accuracy class, for 

example , AC 0.2%, then it’s accuracy under all 

commonly occurring conditions should be within 

±0.2% maximum error.
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NEW ENERGY DEFINITIONS

Time Domain
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NEW ENERGY DEFINITIONS

Frequency Domain
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WHAT DOES THE FUTURE HOLD?

• Over the next FEW years metering may have a whole new 

meaning

• Do these look like meters to you?
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WHAT DOES THE FUTURE HOLD?

• Each has an embedded revenue meter

• Each claims ANSI C12.1 compliance

METER
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Questions and Discussion  

John Kretzschmar
john@samscometering.com

864-590-2883 (cell)

This presentation can also be found under Meter Conferences and 

Schools on the TESCO web site: 

www.tesco-advent.com

http://www.tesco-advent.com/
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