

INTRO TO SELF-CONTAINED, **TRANSFORMER-RATED AND METER FORMS**

Tuesday, March 8, 2022

9:40 AM - 11:00 AM

Tom Lawton and Rob Reese

Meters 101 - Electro-Mechanical vs Solid-State

Meter Forms

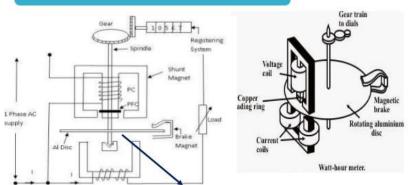
Self-Contained vs Transformer Rated

Blondel's Theorem

Available References (Hardy's, UGLY's Elect Ref)

Examples

1S, 2S, 3S, 4S, 5/35S, 8/9S, 16S



METERS 101 — ELECTRO-MECHANICAL

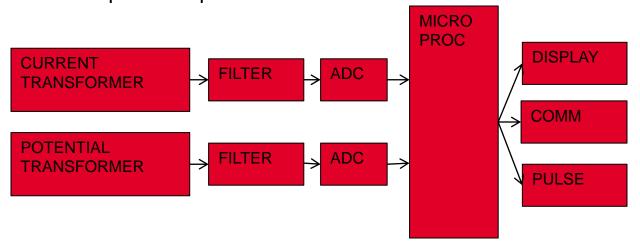
EngineerExperiences.com Series or Current Coil Switch Switch From Transformer Coil Rotating Disk with Copper Shading Bands A D

Equivalent Circuit of Electro-Mechanical Energy Meter

Electromechanical energy meter continue...

Disk to rotate

Overview of Functionality


- The electromechanical induction meter operates through electromagnetic induction
- A non-magnetic, but electrically conductive, metal disc which is made to rotate at a speed proportional to the power passing through the meter
- The disc is acted upon by two sets of <u>induction coils</u>, which form, in effect, a two phase linear induction motor.
- One coil is connected in such a way that it produces a <u>magnetic flux</u> in proportion to the voltage
- The other coil produces a magnetic flux in proportion to the current.
- The field of the voltage coil is delayed by 90 degrees, due to the coil's inductive nature, and calibrated using a lag coil
- This produces <u>eddy currents</u> in the disc and the effect is such that a <u>force</u> is exerted on the disc in proportion to the product of the instantaneous current and instantaneous voltage
- A <u>permanent magnet</u> acts as an <u>eddy current brake</u>, exerting an opposing force proportional to the <u>speed of rotation</u> of the disc
- The equilibrium between these two opposing forces results in the disc rotating at a speed <u>proportional</u> to the power or rate of energy usage
- The disc drives a register mechanism which counts revolutions, much like the <u>odometer</u> in a car, in order to render a measurement of the total energy used.
- The amount of energy represented by one revolution of the disc is denoted by the symbol Kh which is given in units of watt-hours per revolution.
- A Kh of 7.2 is typical. In this example, each full rotation of the disk is equivalent to 7.2Wh of energy.

Meters 101 — Solid-State

Overview of Functionality

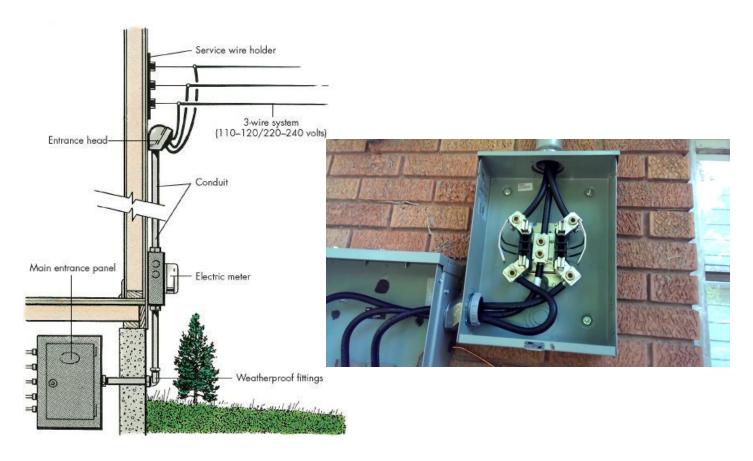
- Potential and Current is scaled down and conditioned with transformers and filters
- ADC's (analog to digital converters) digitize the signals
- A micro-processor or DSP executes the calculations
- Resulting data is displayed, sent externally via the communication circuits, and used for the calibrated pulse output

14S			39S	17S	
. •	3S	12S	4 S	2S	35S
76S	45S	46S	668	10S	25S
5S	26S		11S	6S	32S
150	24S	9S	13S	56S	16S

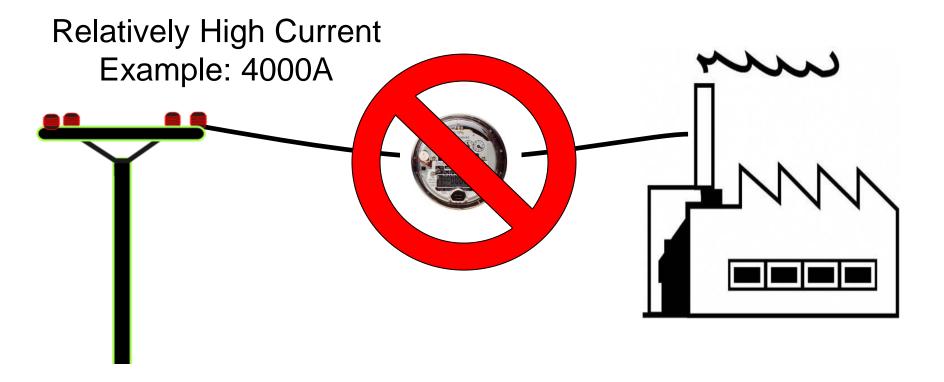
1S	14S			39S				17S	
							2S		
		3S		12S				35S	
76S				46S	4	S	10S	2	25S
						000	103		
			45S			66S			
					11S			32S	
5S		26S				6S			
				9S		13S		16S	
	15S		24S		5		56S		

SELF-CONTAINED				TRANSFORMER-RATED					
1S	20	14S		12S	39S 76S	3S	365	S 29S	7 S
	2S	25S			4S	5	S	46S	35S
17S			16S		11		8S 66S	26S	
		13S			6S			9S	45S
15S			3	32S	56S	1	0S	24S	

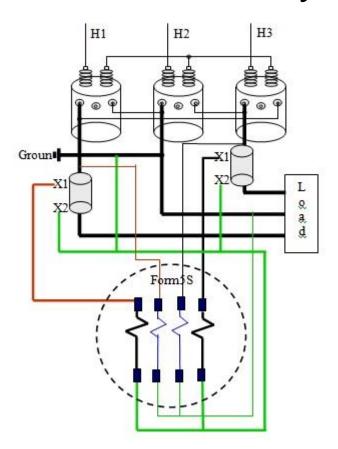
SELF-CONTAINED METERS


Primarily Residential

SELF-CONTAINED


Primarily Residential

TRANSFORMER-RATED METERS


Primarily Commercial/Industrial

TRANSFORMER-RATED METERS

Primarily Commercial/Industrial

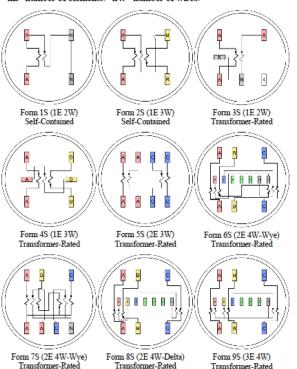


DIAGRAM EXAMPLE

Chapter 2: Introduction to Metering

Meter Forms

Documentation of approved meter forms can be found in ANSI C12.10. "nE" number of elements. "nW" number of wires.

References

- · Power Measurements Handbook, Dr. Bill Hardy
- UGLY's Electrical References
- Meterman's Handbook
- Manufacturer's websites

20

Power Measurements Handbook

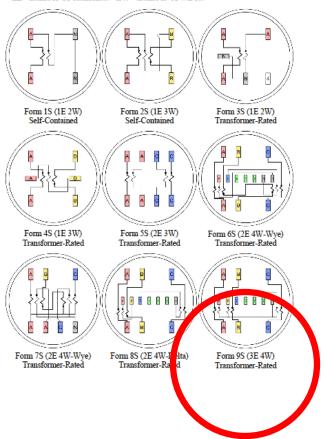
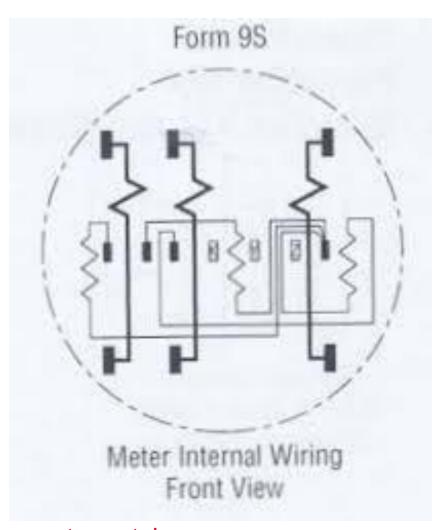


DIAGRAM EXAMPLE

Chapter 2: Introduction to Metering

Meter Forms

Documentation of approved meter forms can be found in ANSI C12.10. "nE" number of elements. "nW" number of wires.

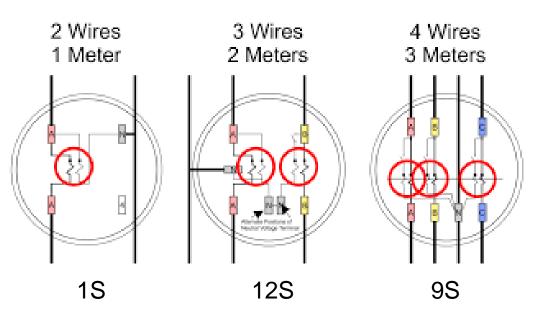

References

- · Power Measurements Handbook, Dr. Bill Hardy
- UGLY's Electrical References
- Meterman's Handbook
- Manufacturer's websites

20 Power Measurements Handbook

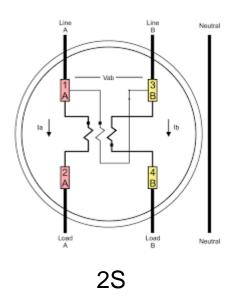
DIAGRAM EXAMPLE

- 3 Current Coils
- 3 Potential Coils


- French Electrical Engineer Andre Blondel
- Attempt to simplify electrical measurements and validation of the results
- Paper submitted to the International Electric Congress in Chicago in 1893.

$$E = n - 1$$

The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.



E = n - 1

The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.

Non-Blondel Compliant

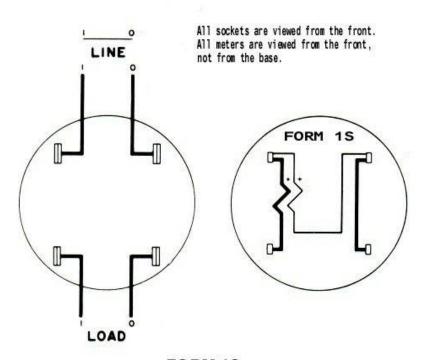
$$E = n - 1$$

The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.

Why is non-Blondel metering bad?

- Makes assumptions about the service
- Example: balanced voltages
- Assumptions might not be true
- When these assumptions are not true, then there are power measurement errors even if the meter is working perfectly.

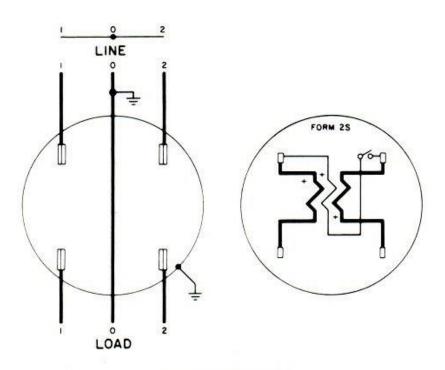
The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.



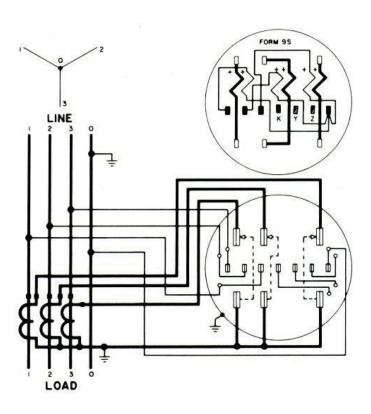
Why are non-Blondel meters used?

- Fewer elements (meters) = lower cost
- Especially true for electro-mechanical meters
- Fewer CT's and PT's = lower cost
- Less wiring and cheaper sockets

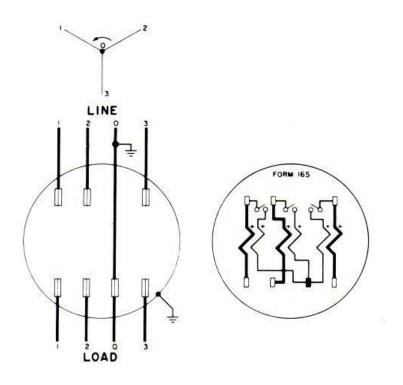
The theorem states that the power provided to a system of N conductors is equal to the algebraic sum of the power measured by N watt-meters. The N watt-meters are separately connected such that each one measures the current level in one of the N conductors and the potential level between that conductor and a common point. In a further simplification, if that common point is located on one of the conductors, that conductor's meter can be removed and only N-1 meters are required.



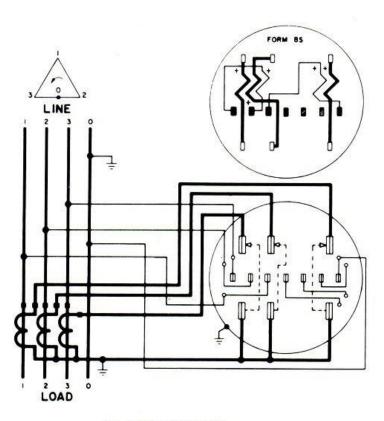
FORM 1S 1ø, 2 W CIRCUIT 1 Stator, 2 W Meter, Self-Contained



1ø, 3 W CIRCUIT 1 Stator, 1ø, 3 W Meter, Self-Contained



3ø, 4 W, Y CIRCUIT 3 Stator, 3ø, 4 W, Y Meter with 3-2 W CT's



3ø, 4 W, Y CIRCUIT 3 Stator, 3ø, 4 W, Y Meter, Self-Contained

3ø, 4 W, Δ CIRCUIT 2 Stator, 3ø, 4 W, Δ Meter with 3-2 W CT's

REFERENCES

- https://en.wikipedia.org/wiki/Blondel%27s_theorem
- http://www.powermeasurements.org/library/Presentations/ /NCMS%202013%20-%20Non-Blondel%20Metering.pdf

https://www.baycitymetering.com/

QUESTIONS AND DISCUSSION

Tom Lawton

President

tom.lawton@tescometering.com

Rob Reese

Midwest Regional Sales Manager rob.reese@tescometering.com

TESCO – The Eastern Specialty Company

Bristol, PA

215-228-0500

This presentation can also be found under Meter Conferences and Schools on the TESCO website: tescometering.com

ISO 9001:2015 Certified Quality Company ISO 17025:2017 Accredited Laboratory