

Meter Forms: Wiring and Uses

Prepared by Rob Reese, TESCO The Eastern Specialty Company

For PREA March 14, 2023

Agenda

Meters 101 - Electro-Mechanical vs Solid-State Meter Forms Self-Contained vs Transformer Rated Blondel's Theorem Available References (Hardy's, UGLY's Elect Ref) Examples 1S, 2S, 9S, 16S

Meters 101 – Electro-mechanical

Equivalent Circuit of Electro-Mechanical Energy Meter

Electromechanical energy meter continue...

Overview of Functionality

- The electromechanical induction meter operates
 through electromagnetic induction
- A non-magnetic, but electrically conductive, metal disc which is made to rotate at a speed proportional to the power passing through the meter
- The disc is acted upon by two sets of <u>induction coils</u>, which form, in effect, a two phase <u>linear induction motor</u>.
- One coil is connected in such a way that it produces a <u>magnetic flux</u> in proportion to the voltage
- The other coil produces a magnetic flux in proportion to the current.
- The field of the voltage coil is delayed by 90 degrees, due to the coil's inductive nature, and calibrated using a lag coil
- This produces <u>eddy currents</u> in the disc and the effect is such that a <u>force</u> is exerted on the disc in proportion to the product of the instantaneous current and instantaneous voltage
- A <u>permanent magnet</u> acts as an <u>eddy current brake</u>, exerting an opposing force proportional to the <u>speed of rotation</u> of the disc
- The equilibrium between these two opposing forces results in the disc rotating at a speed <u>proportional</u> to the power or rate of energy usage
- The disc drives a register mechanism which counts revolutions, much like the <u>odometer</u> in a car, in order to render a measurement of the total energy used.
- The amount of energy represented by one revolution of the disc is denoted by the symbol Kh which is given in units of watt-hours per revolution.
- A Kh of 7.2 is typical. In this example, each full rotation of the disk is equivalent to 7.2Wh of energy.

Meters 101 – Solid-state

Overview of Functionality

- Potential and Current is scaled down and conditioned with transformers and filters
- ADC's (analog to digital converters) digitize the signals
- A micro-processor or DSP executes the calculations
- Resulting data is displayed, sent externally via the communication circuits, and used for the calibrated pulse output

Meter Forms

ANSI C12.10

		Mete	r Forms	5		
15	14S	39S			17S	
76S	3S	12S 46S	4S	2S 10S	35S 25S	
5S	45S 26S	003 11S		6S	32S 16S	
15S	24S	95	Slide 6	56S	TESED	

THE EASTERN SPECIALTY COMPANY

Meter Forms

			Met	er Forms			
1S		14S	39S			17S	
	76S	3S 45S	12S 46S	4S 66S	2S 10S	35S 25S	
5S	158	26S	9S	11S 13S Slide 8	6S 56S	32S 16S	

Meter Forms

SELF-CONTAINED			TRANSFORMER-RATED			
1S	14S	12S	39S 76S	3S 36	6S 29S	7S
2S	25S		4S	5S	46S	35S
17S	1	6S	113	8S S 66S	26S	
	13S		6S 56S	10S	9S	45S
15S		32S ^{si}	lide 9		24S 🗸	TERN SPECIALTY COMPANY

Self-Contained

Primarily Residential

Primarily Commercial/Industrial

Primarily Commercial/Industrial

Safety Test Switch

August 17, 1920
 TESCO founders
 Joseph Seaman and
 Burleigh Currier, along
 with Percy Bartlett

Safety Test Switch

Diagram Example

Chapter 2: Introduction to Metering

Meter Forms

Documentation of approved meter forms can be found in ANSI C12.10. "nE" number of elements. "nW" number of wires.

References

- Power Measurements Handbook, Dr. Bill Hardy
- UGLY's Electrical References
- Meterman's Handbook
- Manufacturer's websites

Diagram Example

Chapter 2: Introduction to Metering

Meter Forms

Documentation of approved meter forms can be found in ANSI C12.10. "nE" number of elements. "nW" number of wires.

References

- Power Measurements Handbook, Dr. Bill Hardy
- UGLY's Electrical References
- Meterman's Handbook
- Manufacturer's websites

Diagram Example

- 3 Current Coils
- 3 Potential Coils

- French Electrical Engineer Andre Blondel
- Attempt to simplify electrical measurements and validation of the results
- Paper submitted to the International Electric Congress in Chicago in 1893.

E = n - 1

E = n - 1

Non-Blondel Compliant

Why is non-Blondel metering bad?

- Makes assumptions about the service
- Example: balanced voltages
- Assumptions might not be true
- When these assumptions are not true, then there are power measurement errors even if the meter is working perfectly.

Why are non-Blondel meters used?

- Fewer elements (meters) = lower cost
- Especially true for electro-mechanical meters
- Fewer CT's and PT's = lower cost
- Less wiring and cheaper sockets

1ø, 3 W CIRCUIT 1 Stator, 1ø, 3 W Meter, Self-Contained

3ø, 4 W, Y CIRCUIT 3 Stator, 3ø, 4 W, Y Meter with 3-2 W CT's

3ø, 4 W, Y CIRCUIT 3 Stator, 3ø, 4 W, Y Meter, Self-Contained

3ø, 4 W, Δ CIRCUIT 2 Stator, 3ø, 4 W, Δ Meter with 3-2 W CT's

References

- https://en.wikipedia.org/wiki/Blondel%27s_theorem
- <u>http://www.powermeasurements.org/library/Presentations/NCMS%202013%</u> 20-%20Non-Blondel%20Metering.pdf
- <u>https://www.baycitymetering.com/</u>

Questions and Discussion

rob.reese@tescometering.com

TESCO – The Eastern Specialty Company Bristol, PA 215-310-8809 (cell)

This presentation can also be found under Meter Conferences and Schools on the TESCO website: www.tescometering.com

> ISO 9001:2015 Certified Quality Company ISO 17025:2017 Accredited Laboratory

